Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,7 +14,7 @@ with open('loras.json', 'r') as f:
|
|
| 14 |
loras = json.load(f)
|
| 15 |
|
| 16 |
# Initialize the base model
|
| 17 |
-
base_model = "
|
| 18 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
| 19 |
|
| 20 |
MAX_SEED = 2**32-1
|
|
@@ -57,7 +57,7 @@ def update_selection(evt: gr.SelectData, width, height):
|
|
| 57 |
)
|
| 58 |
|
| 59 |
@spaces.GPU(duration=70)
|
| 60 |
-
def
|
| 61 |
pipe.to("cuda")
|
| 62 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 63 |
|
|
@@ -65,6 +65,7 @@ def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height,
|
|
| 65 |
# Generate image
|
| 66 |
image = pipe(
|
| 67 |
prompt=f"{prompt} {trigger_word}",
|
|
|
|
| 68 |
num_inference_steps=steps,
|
| 69 |
guidance_scale=cfg_scale,
|
| 70 |
width=width,
|
|
@@ -74,7 +75,7 @@ def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height,
|
|
| 74 |
).images[0]
|
| 75 |
return image
|
| 76 |
|
| 77 |
-
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
| 78 |
if selected_index is None:
|
| 79 |
raise gr.Error("You must select a LoRA before proceeding.")
|
| 80 |
|
|
@@ -94,7 +95,7 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
|
|
| 94 |
if randomize_seed:
|
| 95 |
seed = random.randint(0, MAX_SEED)
|
| 96 |
|
| 97 |
-
image =
|
| 98 |
pipe.to("cpu")
|
| 99 |
pipe.unload_lora_weights()
|
| 100 |
return image, seed
|
|
@@ -110,22 +111,24 @@ css = '''
|
|
| 110 |
'''
|
| 111 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
|
| 112 |
title = gr.HTML(
|
| 113 |
-
"""<h1><img src="https://huggingface.co/
|
| 114 |
elem_id="title",
|
| 115 |
)
|
| 116 |
# Info blob stating what the app is running
|
| 117 |
info_blob = gr.HTML(
|
| 118 |
-
"""<div id="info_blob">
|
| 119 |
)
|
| 120 |
|
| 121 |
# Info blob stating what the app is running
|
| 122 |
info_blob = gr.HTML(
|
| 123 |
-
"""<div id="info_blob">Prephrase prompts w/:
|
| 124 |
)
|
| 125 |
selected_index = gr.State(None)
|
| 126 |
with gr.Row():
|
| 127 |
-
with gr.Column(scale=
|
| 128 |
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Select LoRa/Style & type prompt!")
|
|
|
|
|
|
|
| 129 |
with gr.Column(scale=1, elem_id="gen_column"):
|
| 130 |
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
|
| 131 |
with gr.Row():
|
|
@@ -146,17 +149,17 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
|
|
| 146 |
with gr.Accordion("Advanced Settings", open=True):
|
| 147 |
with gr.Column():
|
| 148 |
with gr.Row():
|
| 149 |
-
cfg_scale = gr.Slider(label="CFG Scale", minimum=0, maximum=20, step=.5, value=
|
| 150 |
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=4)
|
| 151 |
|
| 152 |
with gr.Row():
|
| 153 |
-
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=
|
| 154 |
-
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=
|
| 155 |
|
| 156 |
with gr.Row():
|
| 157 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
| 158 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
| 159 |
-
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3.0, step=0.01, value=0
|
| 160 |
|
| 161 |
gallery.select(
|
| 162 |
update_selection,
|
|
@@ -167,7 +170,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
|
|
| 167 |
gr.on(
|
| 168 |
triggers=[generate_button.click, prompt.submit],
|
| 169 |
fn=run_lora,
|
| 170 |
-
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
|
| 171 |
outputs=[result, seed]
|
| 172 |
)
|
| 173 |
|
|
|
|
| 14 |
loras = json.load(f)
|
| 15 |
|
| 16 |
# Initialize the base model
|
| 17 |
+
base_model = "stabilityai/stable-diffusion-3.5-large-turbo"
|
| 18 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
| 19 |
|
| 20 |
MAX_SEED = 2**32-1
|
|
|
|
| 57 |
)
|
| 58 |
|
| 59 |
@spaces.GPU(duration=70)
|
| 60 |
+
def infer(prompt, negative_prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
| 61 |
pipe.to("cuda")
|
| 62 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 63 |
|
|
|
|
| 65 |
# Generate image
|
| 66 |
image = pipe(
|
| 67 |
prompt=f"{prompt} {trigger_word}",
|
| 68 |
+
negative_prompt=negative_prompt,
|
| 69 |
num_inference_steps=steps,
|
| 70 |
guidance_scale=cfg_scale,
|
| 71 |
width=width,
|
|
|
|
| 75 |
).images[0]
|
| 76 |
return image
|
| 77 |
|
| 78 |
+
def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
| 79 |
if selected_index is None:
|
| 80 |
raise gr.Error("You must select a LoRA before proceeding.")
|
| 81 |
|
|
|
|
| 95 |
if randomize_seed:
|
| 96 |
seed = random.randint(0, MAX_SEED)
|
| 97 |
|
| 98 |
+
image = infer(prompt, negative_prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
| 99 |
pipe.to("cpu")
|
| 100 |
pipe.unload_lora_weights()
|
| 101 |
return image, seed
|
|
|
|
| 111 |
'''
|
| 112 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
|
| 113 |
title = gr.HTML(
|
| 114 |
+
"""<h1><img src="https://huggingface.co/AlekseyCalvin/HSTklimbimOPENfluxLora/resolve/main/acs62iv.png" alt="LoRA">OpenFlux LoRAsoon®</h1>""",
|
| 115 |
elem_id="title",
|
| 116 |
)
|
| 117 |
# Info blob stating what the app is running
|
| 118 |
info_blob = gr.HTML(
|
| 119 |
+
"""<div id="info_blob"> SOON®'s curated LoRa Gallery & Art Manufactory Space.|Runs on Stable Diffusion 3.5 Turbo. Now testing HST-triggerable historic photo-trained LoRAs. </div>"""
|
| 120 |
)
|
| 121 |
|
| 122 |
# Info blob stating what the app is running
|
| 123 |
info_blob = gr.HTML(
|
| 124 |
+
"""<div id="info_blob">Prephrase prompts w/: "HST style autochrome photo" </div>"""
|
| 125 |
)
|
| 126 |
selected_index = gr.State(None)
|
| 127 |
with gr.Row():
|
| 128 |
+
with gr.Column(scale=2):
|
| 129 |
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Select LoRa/Style & type prompt!")
|
| 130 |
+
with gr.Column(scale=2):
|
| 131 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", lines=1, placeholder="What to exclude!")
|
| 132 |
with gr.Column(scale=1, elem_id="gen_column"):
|
| 133 |
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
|
| 134 |
with gr.Row():
|
|
|
|
| 149 |
with gr.Accordion("Advanced Settings", open=True):
|
| 150 |
with gr.Column():
|
| 151 |
with gr.Row():
|
| 152 |
+
cfg_scale = gr.Slider(label="CFG Scale", minimum=0, maximum=20, step=.5, value=4)
|
| 153 |
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=4)
|
| 154 |
|
| 155 |
with gr.Row():
|
| 156 |
+
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|
| 157 |
+
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
| 158 |
|
| 159 |
with gr.Row():
|
| 160 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
| 161 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
| 162 |
+
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3.0, step=0.01, value=1.0)
|
| 163 |
|
| 164 |
gallery.select(
|
| 165 |
update_selection,
|
|
|
|
| 170 |
gr.on(
|
| 171 |
triggers=[generate_button.click, prompt.submit],
|
| 172 |
fn=run_lora,
|
| 173 |
+
inputs=[prompt, negative_prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
|
| 174 |
outputs=[result, seed]
|
| 175 |
)
|
| 176 |
|