Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,6 +7,7 @@ import spaces
|
|
| 7 |
from diffusers import DiffusionPipeline
|
| 8 |
import copy
|
| 9 |
import random
|
|
|
|
| 10 |
|
| 11 |
# Load LoRAs from JSON file
|
| 12 |
with open('loras.json', 'r') as f:
|
|
@@ -19,6 +20,23 @@ pipe.to("cuda")
|
|
| 19 |
|
| 20 |
MAX_SEED = 2**32-1
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
def update_selection(evt: gr.SelectData):
|
| 23 |
selected_lora = loras[evt.index]
|
| 24 |
new_placeholder = f"Type a prompt for {selected_lora['title']}"
|
|
@@ -40,30 +58,34 @@ def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, wid
|
|
| 40 |
trigger_word = selected_lora["trigger_word"]
|
| 41 |
|
| 42 |
# Load LoRA weights
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
| 47 |
|
| 48 |
# Set random seed for reproducibility
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
| 63 |
|
| 64 |
yield image, seed
|
| 65 |
|
| 66 |
-
|
|
|
|
| 67 |
|
| 68 |
|
| 69 |
css = '''
|
|
|
|
| 7 |
from diffusers import DiffusionPipeline
|
| 8 |
import copy
|
| 9 |
import random
|
| 10 |
+
import time
|
| 11 |
|
| 12 |
# Load LoRAs from JSON file
|
| 13 |
with open('loras.json', 'r') as f:
|
|
|
|
| 20 |
|
| 21 |
MAX_SEED = 2**32-1
|
| 22 |
|
| 23 |
+
class calculateDuration:
|
| 24 |
+
def __init__(self, activity_name=""):
|
| 25 |
+
self.activity_name = activity_name
|
| 26 |
+
|
| 27 |
+
def __enter__(self):
|
| 28 |
+
self.start_time = time.time()
|
| 29 |
+
return self
|
| 30 |
+
|
| 31 |
+
def __exit__(self, exc_type, exc_value, traceback):
|
| 32 |
+
self.end_time = time.time()
|
| 33 |
+
self.elapsed_time = self.end_time - self.start_time
|
| 34 |
+
if self.activity_name:
|
| 35 |
+
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
|
| 36 |
+
else:
|
| 37 |
+
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
| 38 |
+
|
| 39 |
+
|
| 40 |
def update_selection(evt: gr.SelectData):
|
| 41 |
selected_lora = loras[evt.index]
|
| 42 |
new_placeholder = f"Type a prompt for {selected_lora['title']}"
|
|
|
|
| 58 |
trigger_word = selected_lora["trigger_word"]
|
| 59 |
|
| 60 |
# Load LoRA weights
|
| 61 |
+
with calculateDuration("Loading LoRA weights"):
|
| 62 |
+
if "weights" in selected_lora:
|
| 63 |
+
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
|
| 64 |
+
else:
|
| 65 |
+
pipe.load_lora_weights(lora_path)
|
| 66 |
|
| 67 |
# Set random seed for reproducibility
|
| 68 |
+
with calculateDuration("Randomizing seed"):
|
| 69 |
+
if randomize_seed:
|
| 70 |
+
seed = random.randint(0, MAX_SEED)
|
| 71 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 72 |
+
|
| 73 |
+
with calculateDuration("Generating image"):
|
| 74 |
+
# Generate image
|
| 75 |
+
image = pipe(
|
| 76 |
+
prompt=f"{prompt} {trigger_word}",
|
| 77 |
+
num_inference_steps=steps,
|
| 78 |
+
guidance_scale=cfg_scale,
|
| 79 |
+
width=width,
|
| 80 |
+
height=height,
|
| 81 |
+
generator=generator,
|
| 82 |
+
joint_attention_kwargs={"scale": lora_scale},
|
| 83 |
+
).images[0]
|
| 84 |
|
| 85 |
yield image, seed
|
| 86 |
|
| 87 |
+
with calculateDuration("Unloading weights"):
|
| 88 |
+
pipe.unload_lora_weights()
|
| 89 |
|
| 90 |
|
| 91 |
css = '''
|