Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,55 +4,27 @@ import logging
|
|
| 4 |
import torch
|
| 5 |
from PIL import Image
|
| 6 |
import spaces
|
| 7 |
-
from diffusers import DiffusionPipeline
|
| 8 |
import copy
|
| 9 |
import random
|
| 10 |
import time
|
| 11 |
from huggingface_hub import hf_hub_download
|
| 12 |
-
from accelerate.utils import set_module_tensor_to_device, compute_module_sizes
|
| 13 |
-
from accelerate import init_empty_weights
|
| 14 |
-
from convert_nf4_flux import replace_with_bnb_linear, create_quantized_param, check_quantized_param
|
| 15 |
from diffusers import FluxTransformer2DModel, FluxPipeline
|
| 16 |
import safetensors.torch
|
| 17 |
import gc
|
| 18 |
-
import torch
|
| 19 |
-
|
| 20 |
-
# Set dtype and check for float8 support
|
| 21 |
-
dtype = torch.bfloat16
|
| 22 |
-
is_torch_e4m3fn_available = hasattr(torch, "float8_e4m3fn")
|
| 23 |
-
|
| 24 |
-
ckpt_path = hf_hub_download("ABDALLALSWAITI/Maxwell", filename="diffusion_pytorch_model.safetensors")
|
| 25 |
-
original_state_dict = safetensors.torch.load_file(ckpt_path)
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
|
| 32 |
-
# Load the state dict into the quantized model
|
| 33 |
-
for param_name, param in original_state_dict.items():
|
| 34 |
-
if param_name not in expected_state_dict_keys:
|
| 35 |
-
continue
|
| 36 |
-
|
| 37 |
-
is_param_float8_e4m3fn = is_torch_e4m3fn_available and param.dtype == torch.float8_e4m3fn
|
| 38 |
-
if torch.is_floating_point(param) and not is_param_float8_e4m3fn:
|
| 39 |
-
param = param.to(dtype)
|
| 40 |
-
|
| 41 |
-
if not check_quantized_param(model, param_name):
|
| 42 |
-
set_module_tensor_to_device(model, param_name, device=0, value=param)
|
| 43 |
-
else:
|
| 44 |
-
create_quantized_param(
|
| 45 |
-
model, param, param_name, target_device=0, state_dict=original_state_dict, pre_quantized=True
|
| 46 |
-
)
|
| 47 |
|
| 48 |
-
|
| 49 |
-
del original_state_dict
|
| 50 |
-
gc.collect()
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
pipe = FluxPipeline.from_pretrained("black-forest-labs/flux.1-dev", transformer=model, torch_dtype=dtype)
|
| 56 |
pipe.enable_model_cpu_offload()
|
| 57 |
|
| 58 |
# Load LoRAs from JSON file
|
|
|
|
| 4 |
import torch
|
| 5 |
from PIL import Image
|
| 6 |
import spaces
|
|
|
|
| 7 |
import copy
|
| 8 |
import random
|
| 9 |
import time
|
| 10 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
|
|
|
| 11 |
from diffusers import FluxTransformer2DModel, FluxPipeline
|
| 12 |
import safetensors.torch
|
| 13 |
import gc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
| 16 |
+
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
| 17 |
+
os.environ["HF_HUB_CACHE"] = cache_path
|
| 18 |
+
os.environ["HF_HOME"] = cache_path
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
|
| 24 |
+
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
|
| 25 |
+
pipe.fuse_lora(lora_scale=0.125)
|
| 26 |
+
pipe.to(device="cuda", dtype=torch.bfloat16)
|
| 27 |
|
|
|
|
| 28 |
pipe.enable_model_cpu_offload()
|
| 29 |
|
| 30 |
# Load LoRAs from JSON file
|