app_hackaton / src /ui_components.py
AlessandroAlfieri's picture
creazione dell'app
9c8c4f7 verified
raw
history blame
9.07 kB
"""
Componenti UI riutilizzabili per Streamlit.
"""
import streamlit as st
import pandas as pd
from typing import Dict
from config import Config
def setup_page_config():
"""Configura la pagina Streamlit"""
st.set_page_config(
page_title="Anonimizzatore Documenti",
page_icon="🔒",
layout="wide"
)
def display_sidebar():
"""Mostra sidebar con configurazioni"""
with st.sidebar:
st.header("⚙️ Configurazione")
# Status Azure
if Config.AZURE_API_KEY and Config.AZURE_ENDPOINT:
st.success("✅ Azure OpenAI configurato")
st.info(f"Chat Model: {Config.DEPLOYMENT_NAME}")
st.info(f"Embedding Model: {Config.AZURE_EMBEDDING_DEPLOYMENT_NAME}")
else:
st.error("❌ Azure OpenAI non configurato")
st.write("Configura le variabili d'ambiente:")
st.code("""
AZURE_ENDPOINT=your_endpoint
AZURE_API_KEY=your_api_key
AZURE_ENDPOINT_EMB=your_embedding_endpoint
AZURE_API_KEY_EMB=your_embedding_api_key
""")
st.markdown("---")
# Statistiche documenti
if 'uploaded_files' in st.session_state and st.session_state.uploaded_files:
st.subheader("📊 Statistiche")
uploaded_count = len(st.session_state.uploaded_files)
anonymized_count = len(st.session_state.get('anonymized_docs', {}))
confirmed_count = sum(1 for doc in st.session_state.get('anonymized_docs', {}).values()
if doc.get('confirmed', False))
st.metric("File caricati", uploaded_count)
st.metric("Anonimizzati", anonymized_count)
st.metric("Confermati", confirmed_count)
if confirmed_count > 0:
if st.session_state.get('vector_store_built', False):
st.success("✅ Knowledge Base pronto")
else:
st.info("🔄 Knowledge Base da costruire")
st.markdown("---")
# Reset button
if st.button("🔄 Reset sessione"):
for key in list(st.session_state.keys()):
del st.session_state[key]
st.rerun()
def display_entity_editor(entities: Dict, doc_key: str):
"""Editor per entità rilevate"""
if not entities:
st.info("Nessuna entità sensibile rilevata.")
return entities
st.subheader("🔍 Entità rilevate")
st.write("Verifica e modifica le entità sensibili:")
current_entities_list = list(entities.items())
updated_entities_dict = {}
deleted_placeholders = set()
for i, (placeholder, original_value) in enumerate(current_entities_list):
col1, col2, col3 = st.columns([2, 3, 1])
with col1:
st.write(f"**{placeholder}**")
with col2:
new_value = st.text_input(
"Valore originale",
value=original_value,
key=f"{doc_key}_{placeholder}_value_{i}"
)
updated_entities_dict[placeholder] = new_value
with col3:
if st.button("🗑️", key=f"{doc_key}_{placeholder}_delete_{i}", help="Rimuovi"):
deleted_placeholders.add(placeholder)
# Gestisci cancellazioni
if deleted_placeholders:
final_entities = {k: v for k, v in updated_entities_dict.items()
if k not in deleted_placeholders}
st.session_state.anonymized_docs[doc_key]['entities'] = final_entities
# Re-anonimizza testo
from anonymizer import NERAnonimizer
anonymizer = NERAnonimizer()
st.session_state.anonymized_docs[doc_key]['anonymized'], _ = anonymizer.anonymize(
st.session_state.anonymized_docs[doc_key]['original']
)
st.session_state.vector_store_built = False
st.rerun()
return updated_entities_dict
def display_file_preview(filename: str, content: str, max_chars: int = 500):
"""Mostra anteprima file"""
with st.expander(f"📄 {filename} ({len(content)} caratteri)"):
preview_text = content[:max_chars]
if len(content) > max_chars:
preview_text += "..."
st.text_area(
"Contenuto",
value=preview_text,
height=150,
disabled=True,
key=f"preview_{filename}",
label_visibility="collapsed"
)
def display_analysis_results(filename: str, result: Dict):
"""Mostra risultati analisi"""
with st.expander(f"📊 Analisi: {filename}"):
# Metriche
col1, col2, col3 = st.columns(3)
col1.metric("Caratteri testo", len(result['anonymized_text']))
col2.metric("Entità trovate", result['entities_count'])
col3.metric("Stato", "✅ Completato")
# Testo anonimizzato
st.subheader("📄 Testo Anonimizzato")
st.text_area(
"Testo processato",
value=result['anonymized_text'],
height=150,
disabled=True,
key=f"analysis_text_{filename}"
)
# Analisi AI
st.subheader("🤖 Analisi AI")
st.markdown(result['analysis'])
# Entità
if result['entities']:
st.subheader("🔍 Entità Anonimizzate")
entities_df = pd.DataFrame([
{
'Placeholder': k,
'Valore Originale': v,
'Tipo': k.split('_')[0].replace('[', '')
}
for k, v in result['entities'].items()
])
st.dataframe(entities_df, use_container_width=True)
def display_crewai_result(analysis: Dict, index: int):
"""Mostra risultato analisi CrewAI"""
with st.expander(
f"🤖 Analisi {index}: {analysis['analysis_type'].upper()} - {analysis['timestamp']}"
):
# Info header
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Tipo Analisi", analysis['analysis_type'].capitalize())
with col2:
st.metric("Timestamp", analysis['timestamp'])
with col3:
agents_used = analysis.get('agents_used', 'auto')
if agents_used == 'auto':
agent_count = "Automatico"
elif isinstance(agents_used, list):
agent_count = f"{len(agents_used)} agenti"
else:
agent_count = str(agents_used)
st.metric("Agenti", agent_count)
# Query e risultato
st.subheader("❓ Query Originale")
st.info(analysis['query'])
st.subheader("🎯 Risultato Analisi")
st.markdown(analysis['result'])
def display_progress_metrics():
"""Mostra metriche di progresso"""
if 'anonymized_docs' in st.session_state:
confirmed_count = sum(1 for doc in st.session_state.anonymized_docs.values()
if doc.get('confirmed', False))
total_count = len(st.session_state.anonymized_docs)
if total_count > 0:
st.metric(
"Progresso Conferme",
f"{confirmed_count}/{total_count}",
delta=f"{(confirmed_count/total_count)*100:.1f}%"
)
def display_examples_section():
"""Mostra esempi di query CrewAI"""
with st.expander("💡 Esempi di Query per CrewAI"):
st.markdown("""
**Analisi Comprensiva:**
- "Fornisci un'analisi completa dei documenti identificando rischi, opportunità e raccomandazioni strategiche"
- "Analizza la comunicazione aziendale e suggerisci miglioramenti nella gestione clienti"
**Analisi Documentale:**
- "Classifica i documenti per tipologia e identifica pattern ricorrenti"
- "Analizza la struttura e organizzazione delle informazioni nei documenti"
**Sentiment Analysis:**
- "Valuta il sentiment generale nelle comunicazioni e identifica aree di miglioramento"
- "Analizza le emozioni e i trend nei feedback dei clienti"
**Query RAG Avanzata:**
- "Trova tutte le menzioni di problemi operativi e le relative soluzioni proposte"
- "Estrai informazioni su scadenze, deadline e milestone importanti"
**Personalizzata:**
- Combina agenti specifici per analisi mirate alle tue esigenze
""")
def create_download_button(data: str, filename: str, label: str, key: str):
"""Crea bottone download con dati"""
st.download_button(
label=label,
data=data,
file_name=filename,
mime="application/json",
key=key
)