Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,12 +2,9 @@ from diffusers import DDPMPipeline
|
|
| 2 |
image_pipe = DDPMPipeline.from_pretrained("google/ddpm-celebahq-256")
|
| 3 |
image_pipe.to("cuda")
|
| 4 |
images = image_pipe().images
|
| 5 |
-
image_pipe
|
| 6 |
from diffusers import UNet2DModel
|
| 7 |
repo_id = "google/ddpm-church-256"
|
| 8 |
model = UNet2DModel.from_pretrained(repo_id)
|
| 9 |
-
model
|
| 10 |
-
model.config
|
| 11 |
model_random = UNet2DModel(**model.config)
|
| 12 |
model_random.save_pretrained("my_model")
|
| 13 |
model_random = UNet2DModel.from_pretrained("my_model")
|
|
@@ -16,19 +13,14 @@ torch.manual_seed(0)
|
|
| 16 |
noisy_sample = torch.randn(
|
| 17 |
1, model.config.in_channels, model.config.sample_size, model.config.sample_size
|
| 18 |
)
|
| 19 |
-
noisy_sample.shape
|
| 20 |
with torch.no_grad():
|
| 21 |
noisy_residual = model(sample=noisy_sample, timestep=2).sample
|
| 22 |
-
noisy_residual.shape
|
| 23 |
from diffusers import DDPMScheduler
|
| 24 |
scheduler = DDPMScheduler.from_config(repo_id)
|
| 25 |
-
scheduler.config
|
| 26 |
-
scheduler.save_config("my_scheduler")
|
| 27 |
new_scheduler = DDPMScheduler.from_config("my_scheduler")
|
| 28 |
less_noisy_sample = scheduler.step(
|
| 29 |
model_output=noisy_residual, timestep=2, sample=noisy_sample
|
| 30 |
).prev_sample
|
| 31 |
-
less_noisy_sample.shape
|
| 32 |
import PIL.Image
|
| 33 |
import numpy as np
|
| 34 |
def display_sample(sample, i):
|
|
@@ -38,7 +30,6 @@ def display_sample(sample, i):
|
|
| 38 |
image_pil = PIL.Image.fromarray(image_processed[0])
|
| 39 |
display(f"Image at step {i}")
|
| 40 |
display(image_pil)
|
| 41 |
-
model.to("cuda")
|
| 42 |
noisy_sample = noisy_sample.to("cuda")
|
| 43 |
import tqdm
|
| 44 |
sample = noisy_sample
|
|
@@ -50,7 +41,6 @@ for i, t in enumerate(tqdm.tqdm(scheduler.timesteps)):
|
|
| 50 |
display_sample(sample, i + 1)
|
| 51 |
from diffusers import DDIMScheduler
|
| 52 |
scheduler = DDIMScheduler.from_config(repo_id)
|
| 53 |
-
scheduler.set_timesteps(num_inference_steps=50)
|
| 54 |
import tqdm
|
| 55 |
sample = noisy_sample
|
| 56 |
for i, t in enumerate(tqdm.tqdm(scheduler.timesteps)):
|
|
|
|
| 2 |
image_pipe = DDPMPipeline.from_pretrained("google/ddpm-celebahq-256")
|
| 3 |
image_pipe.to("cuda")
|
| 4 |
images = image_pipe().images
|
|
|
|
| 5 |
from diffusers import UNet2DModel
|
| 6 |
repo_id = "google/ddpm-church-256"
|
| 7 |
model = UNet2DModel.from_pretrained(repo_id)
|
|
|
|
|
|
|
| 8 |
model_random = UNet2DModel(**model.config)
|
| 9 |
model_random.save_pretrained("my_model")
|
| 10 |
model_random = UNet2DModel.from_pretrained("my_model")
|
|
|
|
| 13 |
noisy_sample = torch.randn(
|
| 14 |
1, model.config.in_channels, model.config.sample_size, model.config.sample_size
|
| 15 |
)
|
|
|
|
| 16 |
with torch.no_grad():
|
| 17 |
noisy_residual = model(sample=noisy_sample, timestep=2).sample
|
|
|
|
| 18 |
from diffusers import DDPMScheduler
|
| 19 |
scheduler = DDPMScheduler.from_config(repo_id)
|
|
|
|
|
|
|
| 20 |
new_scheduler = DDPMScheduler.from_config("my_scheduler")
|
| 21 |
less_noisy_sample = scheduler.step(
|
| 22 |
model_output=noisy_residual, timestep=2, sample=noisy_sample
|
| 23 |
).prev_sample
|
|
|
|
| 24 |
import PIL.Image
|
| 25 |
import numpy as np
|
| 26 |
def display_sample(sample, i):
|
|
|
|
| 30 |
image_pil = PIL.Image.fromarray(image_processed[0])
|
| 31 |
display(f"Image at step {i}")
|
| 32 |
display(image_pil)
|
|
|
|
| 33 |
noisy_sample = noisy_sample.to("cuda")
|
| 34 |
import tqdm
|
| 35 |
sample = noisy_sample
|
|
|
|
| 41 |
display_sample(sample, i + 1)
|
| 42 |
from diffusers import DDIMScheduler
|
| 43 |
scheduler = DDIMScheduler.from_config(repo_id)
|
|
|
|
| 44 |
import tqdm
|
| 45 |
sample = noisy_sample
|
| 46 |
for i, t in enumerate(tqdm.tqdm(scheduler.timesteps)):
|