Spaces:
Configuration error
Configuration error
| #!/usr/bin/env python3 | |
| # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
| import argparse | |
| import logging | |
| import os | |
| import sys | |
| from timeit import default_timer as timer | |
| from typing import Any, ClassVar, Dict, List | |
| import torch | |
| from fvcore.common.file_io import PathManager | |
| from detectron2.data.catalog import DatasetCatalog | |
| from detectron2.utils.logger import setup_logger | |
| from densepose.data.structures import DensePoseDataRelative | |
| from densepose.utils.dbhelper import EntrySelector | |
| from densepose.utils.logger import verbosity_to_level | |
| from densepose.vis.base import CompoundVisualizer | |
| from densepose.vis.bounding_box import BoundingBoxVisualizer | |
| from densepose.vis.densepose import ( | |
| DensePoseDataCoarseSegmentationVisualizer, | |
| DensePoseDataPointsIVisualizer, | |
| DensePoseDataPointsUVisualizer, | |
| DensePoseDataPointsVisualizer, | |
| DensePoseDataPointsVVisualizer, | |
| ) | |
| DOC = """Query DB - a tool to print / visualize data from a database | |
| """ | |
| LOGGER_NAME = "query_db" | |
| logger = logging.getLogger(LOGGER_NAME) | |
| _ACTION_REGISTRY: Dict[str, "Action"] = {} | |
| class Action(object): | |
| def add_arguments(cls: type, parser: argparse.ArgumentParser): | |
| parser.add_argument( | |
| "-v", | |
| "--verbosity", | |
| action="count", | |
| help="Verbose mode. Multiple -v options increase the verbosity.", | |
| ) | |
| def register_action(cls: type): | |
| """ | |
| Decorator for action classes to automate action registration | |
| """ | |
| global _ACTION_REGISTRY | |
| _ACTION_REGISTRY[cls.COMMAND] = cls | |
| return cls | |
| class EntrywiseAction(Action): | |
| def add_arguments(cls: type, parser: argparse.ArgumentParser): | |
| super(EntrywiseAction, cls).add_arguments(parser) | |
| parser.add_argument( | |
| "dataset", metavar="<dataset>", help="Dataset name (e.g. densepose_coco_2014_train)" | |
| ) | |
| parser.add_argument( | |
| "selector", | |
| metavar="<selector>", | |
| help="Dataset entry selector in the form field1[:type]=value1[," | |
| "field2[:type]=value_min-value_max...] which selects all " | |
| "entries from the dataset that satisfy the constraints", | |
| ) | |
| parser.add_argument( | |
| "--max-entries", metavar="N", help="Maximum number of entries to process", type=int | |
| ) | |
| def execute(cls: type, args: argparse.Namespace): | |
| dataset = setup_dataset(args.dataset) | |
| entry_selector = EntrySelector.from_string(args.selector) | |
| context = cls.create_context(args) | |
| if args.max_entries is not None: | |
| for _, entry in zip(range(args.max_entries), dataset): | |
| if entry_selector(entry): | |
| cls.execute_on_entry(entry, context) | |
| else: | |
| for entry in dataset: | |
| if entry_selector(entry): | |
| cls.execute_on_entry(entry, context) | |
| def create_context(cls: type, args: argparse.Namespace) -> Dict[str, Any]: | |
| context = {} | |
| return context | |
| class PrintAction(EntrywiseAction): | |
| """ | |
| Print action that outputs selected entries to stdout | |
| """ | |
| COMMAND: ClassVar[str] = "print" | |
| def add_parser(cls: type, subparsers: argparse._SubParsersAction): | |
| parser = subparsers.add_parser(cls.COMMAND, help="Output selected entries to stdout. ") | |
| cls.add_arguments(parser) | |
| parser.set_defaults(func=cls.execute) | |
| def add_arguments(cls: type, parser: argparse.ArgumentParser): | |
| super(PrintAction, cls).add_arguments(parser) | |
| def execute_on_entry(cls: type, entry: Dict[str, Any], context: Dict[str, Any]): | |
| import pprint | |
| printer = pprint.PrettyPrinter(indent=2, width=200, compact=True) | |
| printer.pprint(entry) | |
| class ShowAction(EntrywiseAction): | |
| """ | |
| Show action that visualizes selected entries on an image | |
| """ | |
| COMMAND: ClassVar[str] = "show" | |
| VISUALIZERS: ClassVar[Dict[str, object]] = { | |
| "dp_segm": DensePoseDataCoarseSegmentationVisualizer(), | |
| "dp_i": DensePoseDataPointsIVisualizer(), | |
| "dp_u": DensePoseDataPointsUVisualizer(), | |
| "dp_v": DensePoseDataPointsVVisualizer(), | |
| "dp_pts": DensePoseDataPointsVisualizer(), | |
| "bbox": BoundingBoxVisualizer(), | |
| } | |
| def add_parser(cls: type, subparsers: argparse._SubParsersAction): | |
| parser = subparsers.add_parser(cls.COMMAND, help="Visualize selected entries") | |
| cls.add_arguments(parser) | |
| parser.set_defaults(func=cls.execute) | |
| def add_arguments(cls: type, parser: argparse.ArgumentParser): | |
| super(ShowAction, cls).add_arguments(parser) | |
| parser.add_argument( | |
| "visualizations", | |
| metavar="<visualizations>", | |
| help="Comma separated list of visualizations, possible values: " | |
| "[{}]".format(",".join(sorted(cls.VISUALIZERS.keys()))), | |
| ) | |
| parser.add_argument( | |
| "--output", | |
| metavar="<image_file>", | |
| default="output.png", | |
| help="File name to save output to", | |
| ) | |
| def execute_on_entry(cls: type, entry: Dict[str, Any], context: Dict[str, Any]): | |
| import cv2 | |
| import numpy as np | |
| image_fpath = PathManager.get_local_path(entry["file_name"]) | |
| image = cv2.imread(image_fpath, cv2.IMREAD_GRAYSCALE) | |
| image = np.tile(image[:, :, np.newaxis], [1, 1, 3]) | |
| datas = cls._extract_data_for_visualizers_from_entry(context["vis_specs"], entry) | |
| visualizer = context["visualizer"] | |
| image_vis = visualizer.visualize(image, datas) | |
| entry_idx = context["entry_idx"] + 1 | |
| out_fname = cls._get_out_fname(entry_idx, context["out_fname"]) | |
| cv2.imwrite(out_fname, image_vis) | |
| logger.info(f"Output saved to {out_fname}") | |
| context["entry_idx"] += 1 | |
| def _get_out_fname(cls: type, entry_idx: int, fname_base: str): | |
| base, ext = os.path.splitext(fname_base) | |
| return base + ".{0:04d}".format(entry_idx) + ext | |
| def create_context(cls: type, args: argparse.Namespace) -> Dict[str, Any]: | |
| vis_specs = args.visualizations.split(",") | |
| visualizers = [] | |
| for vis_spec in vis_specs: | |
| vis = cls.VISUALIZERS[vis_spec] | |
| visualizers.append(vis) | |
| context = { | |
| "vis_specs": vis_specs, | |
| "visualizer": CompoundVisualizer(visualizers), | |
| "out_fname": args.output, | |
| "entry_idx": 0, | |
| } | |
| return context | |
| def _extract_data_for_visualizers_from_entry( | |
| cls: type, vis_specs: List[str], entry: Dict[str, Any] | |
| ): | |
| dp_list = [] | |
| bbox_list = [] | |
| for annotation in entry["annotations"]: | |
| is_valid, _ = DensePoseDataRelative.validate_annotation(annotation) | |
| if not is_valid: | |
| continue | |
| bbox = torch.as_tensor(annotation["bbox"]) | |
| bbox_list.append(bbox) | |
| dp_data = DensePoseDataRelative(annotation) | |
| dp_list.append(dp_data) | |
| datas = [] | |
| for vis_spec in vis_specs: | |
| datas.append(bbox_list if "bbox" == vis_spec else (bbox_list, dp_list)) | |
| return datas | |
| def setup_dataset(dataset_name): | |
| logger.info("Loading dataset {}".format(dataset_name)) | |
| start = timer() | |
| dataset = DatasetCatalog.get(dataset_name) | |
| stop = timer() | |
| logger.info("Loaded dataset {} in {:.3f}s".format(dataset_name, stop - start)) | |
| return dataset | |
| def create_argument_parser() -> argparse.ArgumentParser: | |
| parser = argparse.ArgumentParser( | |
| description=DOC, | |
| formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=120), | |
| ) | |
| parser.set_defaults(func=lambda _: parser.print_help(sys.stdout)) | |
| subparsers = parser.add_subparsers(title="Actions") | |
| for _, action in _ACTION_REGISTRY.items(): | |
| action.add_parser(subparsers) | |
| return parser | |
| def main(): | |
| parser = create_argument_parser() | |
| args = parser.parse_args() | |
| verbosity = args.verbosity if hasattr(args, "verbosity") else None | |
| global logger | |
| logger = setup_logger(name=LOGGER_NAME) | |
| logger.setLevel(verbosity_to_level(verbosity)) | |
| args.func(args) | |
| if __name__ == "__main__": | |
| main() | |