Spaces:
Configuration error
Configuration error
| #!/usr/bin/env python3 | |
| # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
| """ | |
| DensePose Training Script. | |
| This script is similar to the training script in detectron2/tools. | |
| It is an example of how a user might use detectron2 for a new project. | |
| """ | |
| import logging | |
| import os | |
| from collections import OrderedDict | |
| from fvcore.common.file_io import PathManager | |
| import detectron2.utils.comm as comm | |
| from detectron2.checkpoint import DetectionCheckpointer | |
| from detectron2.config import CfgNode, get_cfg | |
| from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, hooks, launch | |
| from detectron2.evaluation import COCOEvaluator, DatasetEvaluators, verify_results | |
| from detectron2.modeling import DatasetMapperTTA | |
| from detectron2.utils.logger import setup_logger | |
| from densepose import ( | |
| DensePoseCOCOEvaluator, | |
| DensePoseGeneralizedRCNNWithTTA, | |
| add_dataset_category_config, | |
| add_densepose_config, | |
| load_from_cfg, | |
| ) | |
| from densepose.data import DatasetMapper, build_detection_test_loader, build_detection_train_loader | |
| class Trainer(DefaultTrainer): | |
| def build_evaluator(cls, cfg: CfgNode, dataset_name, output_folder=None): | |
| if output_folder is None: | |
| output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") | |
| evaluators = [COCOEvaluator(dataset_name, cfg, True, output_folder)] | |
| if cfg.MODEL.DENSEPOSE_ON: | |
| evaluators.append(DensePoseCOCOEvaluator(dataset_name, True, output_folder)) | |
| return DatasetEvaluators(evaluators) | |
| def build_test_loader(cls, cfg: CfgNode, dataset_name): | |
| return build_detection_test_loader(cfg, dataset_name, mapper=DatasetMapper(cfg, False)) | |
| def build_train_loader(cls, cfg: CfgNode): | |
| return build_detection_train_loader(cfg, mapper=DatasetMapper(cfg, True)) | |
| def test_with_TTA(cls, cfg: CfgNode, model): | |
| logger = logging.getLogger("detectron2.trainer") | |
| # In the end of training, run an evaluation with TTA | |
| # Only support some R-CNN models. | |
| logger.info("Running inference with test-time augmentation ...") | |
| transform_data = load_from_cfg(cfg) | |
| model = DensePoseGeneralizedRCNNWithTTA(cfg, model, transform_data, DatasetMapperTTA(cfg)) | |
| evaluators = [ | |
| cls.build_evaluator( | |
| cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA") | |
| ) | |
| for name in cfg.DATASETS.TEST | |
| ] | |
| res = cls.test(cfg, model, evaluators) | |
| res = OrderedDict({k + "_TTA": v for k, v in res.items()}) | |
| return res | |
| def setup(args): | |
| cfg = get_cfg() | |
| add_dataset_category_config(cfg) | |
| add_densepose_config(cfg) | |
| cfg.merge_from_file(args.config_file) | |
| cfg.merge_from_list(args.opts) | |
| cfg.freeze() | |
| default_setup(cfg, args) | |
| # Setup logger for "densepose" module | |
| setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="densepose") | |
| return cfg | |
| def main(args): | |
| cfg = setup(args) | |
| # disable strict kwargs checking: allow one to specify path handle | |
| # hints through kwargs, like timeout in DP evaluation | |
| PathManager.set_strict_kwargs_checking(False) | |
| if args.eval_only: | |
| model = Trainer.build_model(cfg) | |
| DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( | |
| cfg.MODEL.WEIGHTS, resume=args.resume | |
| ) | |
| res = Trainer.test(cfg, model) | |
| if cfg.TEST.AUG.ENABLED: | |
| res.update(Trainer.test_with_TTA(cfg, model)) | |
| if comm.is_main_process(): | |
| verify_results(cfg, res) | |
| return res | |
| trainer = Trainer(cfg) | |
| trainer.resume_or_load(resume=args.resume) | |
| if cfg.TEST.AUG.ENABLED: | |
| trainer.register_hooks( | |
| [hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model))] | |
| ) | |
| return trainer.train() | |
| if __name__ == "__main__": | |
| args = default_argument_parser().parse_args() | |
| print("Command Line Args:", args) | |
| launch( | |
| main, | |
| args.num_gpus, | |
| num_machines=args.num_machines, | |
| machine_rank=args.machine_rank, | |
| dist_url=args.dist_url, | |
| args=(args,), | |
| ) | |