Spaces:
Sleeping
Sleeping
Update tasks/image.py
Browse files- tasks/image.py +24 -12
tasks/image.py
CHANGED
|
@@ -3,6 +3,7 @@ import torch.nn as nn
|
|
| 3 |
import torch.optim as optim
|
| 4 |
from torchvision import transforms
|
| 5 |
from torch.utils.data import DataLoader, Dataset
|
|
|
|
| 6 |
|
| 7 |
from fastapi import APIRouter
|
| 8 |
from datetime import datetime
|
|
@@ -180,19 +181,30 @@ async def evaluate_image(request: ImageEvaluationRequest):
|
|
| 180 |
|
| 181 |
|
| 182 |
# Training loop
|
| 183 |
-
num_epochs = 10
|
| 184 |
-
for epoch in range(num_epochs):
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
# Evaluation loop
|
| 198 |
model.eval() # Set the model to evaluation mode
|
|
|
|
| 3 |
import torch.optim as optim
|
| 4 |
from torchvision import transforms
|
| 5 |
from torch.utils.data import DataLoader, Dataset
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
|
| 8 |
from fastapi import APIRouter
|
| 9 |
from datetime import datetime
|
|
|
|
| 181 |
|
| 182 |
|
| 183 |
# Training loop
|
| 184 |
+
# num_epochs = 10
|
| 185 |
+
# for epoch in range(num_epochs):
|
| 186 |
+
# for images, labels in train_loader :
|
| 187 |
+
# images, labels = images.to(device), labels.to(device)
|
| 188 |
+
# # Zero the parameter gradients
|
| 189 |
+
# optimizer.zero_grad()
|
| 190 |
|
| 191 |
+
# # Forward + backward + optimize
|
| 192 |
+
# outputs = model(images)
|
| 193 |
+
# loss = criterion(outputs, labels)
|
| 194 |
+
# loss.backward()
|
| 195 |
+
# optimizer.step()
|
| 196 |
+
# print(f'Epoch [{epoch + 1}/10], Loss: {loss.item():.4f}')
|
| 197 |
+
|
| 198 |
+
# Charging pre-trained model
|
| 199 |
+
repo_id = "AlexandreL2024/CNN-Image-Classification"
|
| 200 |
+
filename = "model_CNN_2Layers.pth"
|
| 201 |
+
|
| 202 |
+
# Upload file .pth from Hugging Face
|
| 203 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
| 204 |
+
|
| 205 |
+
# Charger le modèle avec torch.load()
|
| 206 |
+
model = ImageClassifier()
|
| 207 |
+
model = model.load_state_dict(torch.load(model_path))
|
| 208 |
|
| 209 |
# Evaluation loop
|
| 210 |
model.eval() # Set the model to evaluation mode
|