import threading from typing import Any import insightface import roop.globals from roop.typing import Frame, Face import cv2 import numpy as np from roop.capturer import get_video_frame from roop.utilities import resolve_relative_path, conditional_download FACE_ANALYSER = None THREAD_LOCK_ANALYSER = threading.Lock() THREAD_LOCK_SWAPPER = threading.Lock() FACE_SWAPPER = None def get_face_analyser() -> Any: global FACE_ANALYSER with THREAD_LOCK_ANALYSER: if FACE_ANALYSER is None: if roop.globals.CFG.force_cpu: print('Forcing CPU for Face Analysis') FACE_ANALYSER = insightface.app.FaceAnalysis(name='buffalo_l', providers=['CPUExecutionProvider']) else: FACE_ANALYSER = insightface.app.FaceAnalysis(name='buffalo_l', providers=roop.globals.execution_providers) FACE_ANALYSER.prepare(ctx_id=0, det_size=(640, 640) if roop.globals.default_det_size else (320,320)) return FACE_ANALYSER def get_first_face(frame: Frame) -> Any: try: faces = get_face_analyser().get(frame) return min(faces, key=lambda x: x.bbox[0]) # return sorted(faces, reverse=True, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))[0] except: return None def get_all_faces(frame: Frame) -> Any: try: faces = get_face_analyser().get(frame) return sorted(faces, key = lambda x : x.bbox[0]) except: return None def extract_face_images(source_filename, video_info): face_data = [] source_image = None if video_info[0]: frame = get_video_frame(source_filename, video_info[1]) if frame is not None: source_image = frame else: return face_data else: source_image = cv2.imread(source_filename) faces = get_all_faces(source_image) if faces is None: return face_data i = 0 for face in faces: (startX, startY, endX, endY) = face['bbox'].astype("int") face_temp = source_image[startY:endY, startX:endX] if face_temp.size < 1: continue i += 1 face_data.append([face, face_temp]) return face_data def get_face_swapper() -> Any: global FACE_SWAPPER with THREAD_LOCK_SWAPPER: if FACE_SWAPPER is None: model_path = resolve_relative_path('../models/inswapper_128.onnx') FACE_SWAPPER = insightface.model_zoo.get_model(model_path, providers=roop.globals.execution_providers) return FACE_SWAPPER def pre_check() -> bool: download_directory_path = resolve_relative_path('../models') conditional_download(download_directory_path, ['https://huggingface.co/countfloyd/deepfake/resolve/main/inswapper_128.onnx']) return True def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame: return get_face_swapper().get(temp_frame, target_face, source_face, paste_back=True) def face_offset_top(face: Face, offset): smallestmin = np.min(face.landmark_2d_106, 1) smallest = smallestmin[1] face['bbox'][1] += offset face['bbox'][3] += offset lm106 = face.landmark_2d_106 add = np.full_like(lm106, [0, offset]) face['landmark_2d_106'] = lm106 + add return face