File size: 3,456 Bytes
ed0c48c
 
 
1033417
ed0c48c
 
8987ddb
ed0c48c
 
 
 
 
 
6306cd3
ed0c48c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033417
ed0c48c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033417
ed0c48c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033417
ed0c48c
 
409dd63
ed0c48c
 
 
409dd63
ed0c48c
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from langchain_core.tools import tool
from langgraph.graph import StateGraph, START, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_groq import ChatGroq
from langchain_core.messages import HumanMessage, SystemMessage
import math

# -------------------------
# Tools
# -------------------------
@tool
def add(a: float, b: float) -> float:
    return a + b

@tool
def subtract(a: float, b: float) -> float:
    return a - b

@tool
def multiply(a: float, b: float) -> float:
    return a * b

@tool
def divide(a: float, b: float) -> float:
    if b == 0:
        return float('inf')
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    return a % b

@tool
def python_eval(code: str) -> str:
    try:
        result = eval(code)
        return f"Result: {result}"
    except Exception as e:
        return f"Error: {str(e)}"

@tool
def translate_to_arabic(text: str) -> str:
    return f"Arabic translation of '{text}'"

@tool
def translate_to_english(text: str) -> str:
    return f"English translation of '{text}'"

@tool
def summarize_text(text: str) -> str:
    return f"Summary: {text[:100]}..."

@tool
def analyze_sentiment(text: str) -> str:
    if any(word in text.lower() for word in ["good", "great", "excellent", "happy"]):
        return "Sentiment: Positive"
    elif any(word in text.lower() for word in ["bad", "terrible", "sad", "hate"]):
        return "Sentiment: Negative"
    return "Sentiment: Neutral"

@tool
def speech_to_text_stub(audio: str) -> str:
    return "Converted audio to text: (This is a placeholder result)"

# -------------------------
# System Prompt
# -------------------------
system_prompt = """
You are DeepSeek, a thoughtful and curious AI assistant. You analyze before answering.
You always reflect step by step, consider using tools intelligently, and aim for precision and clarity.

Behaviors:
- Think deeply about the user's question.
- Decide if you need tools to calculate, search, translate, or analyze.
- If no tool is needed, answer directly with your own knowledge.

Respond in a helpful, concise, and accurate way.
"""
sys_msg = SystemMessage(content=system_prompt)

# -------------------------
# Build LangGraph Agent
# -------------------------
def build_deepseek_graph():
    llm = ChatGroq(model="deepseek-llm-67b", temperature=0.3)

    all_tools = [
        add, subtract, multiply, divide, modulus,
        translate_to_arabic, translate_to_english,
        summarize_text, analyze_sentiment,
        python_eval, speech_to_text_stub
    ]
    llm_with_tools = llm.bind_tools(all_tools)

    def assistant(state: MessagesState):
        return {"messages": [llm_with_tools.invoke(state["messages"])]}

    builder = StateGraph(MessagesState)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(all_tools))

    builder.add_edge(START, "assistant")
    builder.add_conditional_edges("assistant", tools_condition)
    builder.add_edge("tools", "assistant")

    ninu = builder.compile()  
    return ninu

# -------------------------
# Example Run
# -------------------------
if __name__ == "__main__":
    ninu = build_deepseek_graph()  
    user_question = "ترجم لي الجملة: Artificial intelligence is transforming education."
    messages = [sys_msg, HumanMessage(content=user_question)]
    result = ninu.invoke({"messages": messages})
    for msg in result["messages"]:
        print("\n", msg.content)