Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,14 @@
|
|
1 |
""" Basic Agent Evaluation Runner"""
|
2 |
import os
|
3 |
-
import inspect
|
4 |
import gradio as gr
|
5 |
import requests
|
6 |
import pandas as pd
|
7 |
from langchain_core.messages import HumanMessage
|
8 |
from agent import ninu # استيراد دالة بناء الـ agent من ملف agent.py
|
9 |
|
10 |
-
|
11 |
-
# (Keep Constants as is)
|
12 |
-
# --- Constants ---
|
13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
14 |
|
15 |
-
# --- Basic Agent Definition ---
|
16 |
-
# ----- THIS IS WHERE YOU CAN BUILD WHAT YOU WANT ------
|
17 |
-
|
18 |
class BasicAgent:
|
19 |
"""A langgraph agent."""
|
20 |
def __init__(self):
|
@@ -23,22 +17,13 @@ class BasicAgent:
|
|
23 |
|
24 |
def __call__(self, question: str) -> str:
|
25 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
26 |
-
# Wrap the question in a HumanMessage from langchain_core
|
27 |
messages = [HumanMessage(content=question)]
|
28 |
messages = self.graph.invoke({"messages": messages})
|
29 |
answer = messages['messages'][-1].content
|
30 |
-
#
|
31 |
-
return answer[14:]
|
32 |
-
|
33 |
|
34 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
35 |
-
""
|
36 |
-
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
37 |
-
and displays the results.
|
38 |
-
"""
|
39 |
-
# --- Determine HF Space Runtime URL and Repo URL ---
|
40 |
-
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
41 |
-
|
42 |
if profile:
|
43 |
username = f"{profile.username}"
|
44 |
print(f"User logged in: {username}")
|
@@ -50,67 +35,52 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
50 |
questions_url = f"{api_url}/questions"
|
51 |
submit_url = f"{api_url}/submit"
|
52 |
|
53 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
54 |
try:
|
55 |
agent = BasicAgent()
|
56 |
except Exception as e:
|
57 |
-
print(f"Error instantiating agent: {e}")
|
58 |
return f"Error initializing agent: {e}", None
|
59 |
|
60 |
-
# Link to your HF repo (if running as a HF space)
|
61 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
62 |
-
print(agent_code)
|
63 |
|
64 |
-
# 2. Fetch Questions
|
65 |
-
print(f"Fetching questions from: {questions_url}")
|
66 |
try:
|
67 |
response = requests.get(questions_url, timeout=15)
|
68 |
response.raise_for_status()
|
69 |
questions_data = response.json()
|
70 |
-
if not questions_data:
|
71 |
-
print("Fetched questions list is empty.")
|
72 |
-
return "Fetched questions list is empty or invalid format.", None
|
73 |
-
print(f"Fetched {len(questions_data)} questions.")
|
74 |
-
except requests.exceptions.RequestException as e:
|
75 |
-
print(f"Error fetching questions: {e}")
|
76 |
-
return f"Error fetching questions: {e}", None
|
77 |
-
except requests.exceptions.JSONDecodeError as e:
|
78 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
79 |
-
print(f"Response text: {response.text[:500]}")
|
80 |
-
return f"Error decoding server response for questions: {e}", None
|
81 |
except Exception as e:
|
82 |
-
|
83 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
84 |
|
85 |
-
# 3. Run your Agent
|
86 |
results_log = []
|
87 |
answers_payload = []
|
88 |
-
|
89 |
for item in questions_data:
|
90 |
task_id = item.get("task_id")
|
91 |
question_text = item.get("question")
|
92 |
if not task_id or question_text is None:
|
93 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
94 |
continue
|
95 |
try:
|
96 |
submitted_answer = agent(question_text)
|
97 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
98 |
-
results_log.append({
|
|
|
|
|
|
|
|
|
99 |
except Exception as e:
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
102 |
|
103 |
if not answers_payload:
|
104 |
-
print("Agent did not produce any answers to submit.")
|
105 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
111 |
|
112 |
-
# 5. Submit
|
113 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
114 |
try:
|
115 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
116 |
response.raise_for_status()
|
@@ -122,50 +92,21 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
122 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
123 |
f"Message: {result_data.get('message', 'No message received.')}"
|
124 |
)
|
125 |
-
print("Submission successful.")
|
126 |
results_df = pd.DataFrame(results_log)
|
127 |
return final_status, results_df
|
128 |
-
except requests.exceptions.HTTPError as e:
|
129 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
130 |
-
try:
|
131 |
-
error_json = e.response.json()
|
132 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
133 |
-
except requests.exceptions.JSONDecodeError:
|
134 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
135 |
-
status_message = f"Submission Failed: {error_detail}"
|
136 |
-
print(status_message)
|
137 |
-
results_df = pd.DataFrame(results_log)
|
138 |
-
return status_message, results_df
|
139 |
-
except requests.exceptions.Timeout:
|
140 |
-
status_message = "Submission Failed: The request timed out."
|
141 |
-
print(status_message)
|
142 |
-
results_df = pd.DataFrame(results_log)
|
143 |
-
return status_message, results_df
|
144 |
-
except requests.exceptions.RequestException as e:
|
145 |
-
status_message = f"Submission Failed: Network error - {e}"
|
146 |
-
print(status_message)
|
147 |
-
results_df = pd.DataFrame(results_log)
|
148 |
-
return status_message, results_df
|
149 |
except Exception as e:
|
150 |
-
|
151 |
-
print(status_message)
|
152 |
-
results_df = pd.DataFrame(results_log)
|
153 |
-
return status_message, results_df
|
154 |
|
155 |
|
156 |
-
#
|
157 |
with gr.Blocks() as demo:
|
158 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
159 |
gr.Markdown(
|
160 |
"""
|
161 |
**Instructions:**
|
162 |
-
1.
|
163 |
-
2.
|
164 |
-
3.
|
165 |
-
---
|
166 |
-
**Disclaimers:**
|
167 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
168 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a separate action or even to answer the questions asynchronously.
|
169 |
"""
|
170 |
)
|
171 |
|
@@ -174,7 +115,6 @@ with gr.Blocks() as demo:
|
|
174 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
175 |
|
176 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
177 |
-
# Removed max_rows=10 from DataFrame constructor
|
178 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
179 |
|
180 |
run_button.click(
|
@@ -183,25 +123,5 @@ with gr.Blocks() as demo:
|
|
183 |
)
|
184 |
|
185 |
if __name__ == "__main__":
|
186 |
-
print("\
|
187 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
188 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
189 |
-
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
190 |
-
|
191 |
-
if space_host_startup:
|
192 |
-
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
193 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
194 |
-
else:
|
195 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
196 |
-
|
197 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
198 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
199 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
200 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
201 |
-
else:
|
202 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
203 |
-
|
204 |
-
print("-" * (60 + len(" App Starting ")) + "\n")
|
205 |
-
|
206 |
-
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
207 |
demo.launch(debug=True, share=False)
|
|
|
1 |
""" Basic Agent Evaluation Runner"""
|
2 |
import os
|
|
|
3 |
import gradio as gr
|
4 |
import requests
|
5 |
import pandas as pd
|
6 |
from langchain_core.messages import HumanMessage
|
7 |
from agent import ninu # استيراد دالة بناء الـ agent من ملف agent.py
|
8 |
|
9 |
+
# Constants
|
|
|
|
|
10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
11 |
|
|
|
|
|
|
|
12 |
class BasicAgent:
|
13 |
"""A langgraph agent."""
|
14 |
def __init__(self):
|
|
|
17 |
|
18 |
def __call__(self, question: str) -> str:
|
19 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
|
|
20 |
messages = [HumanMessage(content=question)]
|
21 |
messages = self.graph.invoke({"messages": messages})
|
22 |
answer = messages['messages'][-1].content
|
23 |
+
return answer[14:] # تعديل حسب البنية التي يرجعها النموذج
|
|
|
|
|
24 |
|
25 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
26 |
+
space_id = os.getenv("SPACE_ID")
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
if profile:
|
28 |
username = f"{profile.username}"
|
29 |
print(f"User logged in: {username}")
|
|
|
35 |
questions_url = f"{api_url}/questions"
|
36 |
submit_url = f"{api_url}/submit"
|
37 |
|
|
|
38 |
try:
|
39 |
agent = BasicAgent()
|
40 |
except Exception as e:
|
|
|
41 |
return f"Error initializing agent: {e}", None
|
42 |
|
|
|
43 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
|
|
44 |
|
|
|
|
|
45 |
try:
|
46 |
response = requests.get(questions_url, timeout=15)
|
47 |
response.raise_for_status()
|
48 |
questions_data = response.json()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
except Exception as e:
|
50 |
+
return f"Error fetching questions: {e}", None
|
|
|
51 |
|
|
|
52 |
results_log = []
|
53 |
answers_payload = []
|
54 |
+
|
55 |
for item in questions_data:
|
56 |
task_id = item.get("task_id")
|
57 |
question_text = item.get("question")
|
58 |
if not task_id or question_text is None:
|
|
|
59 |
continue
|
60 |
try:
|
61 |
submitted_answer = agent(question_text)
|
62 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
63 |
+
results_log.append({
|
64 |
+
"Task ID": task_id,
|
65 |
+
"Question": question_text,
|
66 |
+
"Submitted Answer": submitted_answer
|
67 |
+
})
|
68 |
except Exception as e:
|
69 |
+
results_log.append({
|
70 |
+
"Task ID": task_id,
|
71 |
+
"Question": question_text,
|
72 |
+
"Submitted Answer": f"AGENT ERROR: {e}"
|
73 |
+
})
|
74 |
|
75 |
if not answers_payload:
|
|
|
76 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
77 |
|
78 |
+
submission_data = {
|
79 |
+
"username": username.strip(),
|
80 |
+
"agent_code": agent_code,
|
81 |
+
"answers": answers_payload
|
82 |
+
}
|
83 |
|
|
|
|
|
84 |
try:
|
85 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
86 |
response.raise_for_status()
|
|
|
92 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
93 |
f"Message: {result_data.get('message', 'No message received.')}"
|
94 |
)
|
|
|
95 |
results_df = pd.DataFrame(results_log)
|
96 |
return final_status, results_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
except Exception as e:
|
98 |
+
return f"Submission Failed: {e}", pd.DataFrame(results_log)
|
|
|
|
|
|
|
99 |
|
100 |
|
101 |
+
# Gradio UI
|
102 |
with gr.Blocks() as demo:
|
103 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
104 |
gr.Markdown(
|
105 |
"""
|
106 |
**Instructions:**
|
107 |
+
1. Clone this space and customize the agent logic.
|
108 |
+
2. Log in with Hugging Face to enable submission.
|
109 |
+
3. Click the button to run evaluation and submit all answers.
|
|
|
|
|
|
|
|
|
110 |
"""
|
111 |
)
|
112 |
|
|
|
115 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
116 |
|
117 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
118 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
119 |
|
120 |
run_button.click(
|
|
|
123 |
)
|
124 |
|
125 |
if __name__ == "__main__":
|
126 |
+
print("\nLaunching Gradio Interface...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
demo.launch(debug=True, share=False)
|