Ali-Developments commited on
Commit
e4bdf70
·
verified ·
1 Parent(s): 80ee31a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -106
app.py CHANGED
@@ -1,20 +1,14 @@
1
  """ Basic Agent Evaluation Runner"""
2
  import os
3
- import inspect
4
  import gradio as gr
5
  import requests
6
  import pandas as pd
7
  from langchain_core.messages import HumanMessage
8
  from agent import ninu # استيراد دالة بناء الـ agent من ملف agent.py
9
 
10
-
11
- # (Keep Constants as is)
12
- # --- Constants ---
13
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
14
 
15
- # --- Basic Agent Definition ---
16
- # ----- THIS IS WHERE YOU CAN BUILD WHAT YOU WANT ------
17
-
18
  class BasicAgent:
19
  """A langgraph agent."""
20
  def __init__(self):
@@ -23,22 +17,13 @@ class BasicAgent:
23
 
24
  def __call__(self, question: str) -> str:
25
  print(f"Agent received question (first 50 chars): {question[:50]}...")
26
- # Wrap the question in a HumanMessage from langchain_core
27
  messages = [HumanMessage(content=question)]
28
  messages = self.graph.invoke({"messages": messages})
29
  answer = messages['messages'][-1].content
30
- # تفصيل هذه السطر حسب إجابة الـ agent لديك، أنا حافظتها كما كانت
31
- return answer[14:]
32
-
33
 
34
  def run_and_submit_all(profile: gr.OAuthProfile | None):
35
- """
36
- Fetches all questions, runs the BasicAgent on them, submits all answers,
37
- and displays the results.
38
- """
39
- # --- Determine HF Space Runtime URL and Repo URL ---
40
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
41
-
42
  if profile:
43
  username = f"{profile.username}"
44
  print(f"User logged in: {username}")
@@ -50,67 +35,52 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
50
  questions_url = f"{api_url}/questions"
51
  submit_url = f"{api_url}/submit"
52
 
53
- # 1. Instantiate Agent ( modify this part to create your agent)
54
  try:
55
  agent = BasicAgent()
56
  except Exception as e:
57
- print(f"Error instantiating agent: {e}")
58
  return f"Error initializing agent: {e}", None
59
 
60
- # Link to your HF repo (if running as a HF space)
61
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
62
- print(agent_code)
63
 
64
- # 2. Fetch Questions
65
- print(f"Fetching questions from: {questions_url}")
66
  try:
67
  response = requests.get(questions_url, timeout=15)
68
  response.raise_for_status()
69
  questions_data = response.json()
70
- if not questions_data:
71
- print("Fetched questions list is empty.")
72
- return "Fetched questions list is empty or invalid format.", None
73
- print(f"Fetched {len(questions_data)} questions.")
74
- except requests.exceptions.RequestException as e:
75
- print(f"Error fetching questions: {e}")
76
- return f"Error fetching questions: {e}", None
77
- except requests.exceptions.JSONDecodeError as e:
78
- print(f"Error decoding JSON response from questions endpoint: {e}")
79
- print(f"Response text: {response.text[:500]}")
80
- return f"Error decoding server response for questions: {e}", None
81
  except Exception as e:
82
- print(f"An unexpected error occurred fetching questions: {e}")
83
- return f"An unexpected error occurred fetching questions: {e}", None
84
 
85
- # 3. Run your Agent
86
  results_log = []
87
  answers_payload = []
88
- print(f"Running agent on {len(questions_data)} questions...")
89
  for item in questions_data:
90
  task_id = item.get("task_id")
91
  question_text = item.get("question")
92
  if not task_id or question_text is None:
93
- print(f"Skipping item with missing task_id or question: {item}")
94
  continue
95
  try:
96
  submitted_answer = agent(question_text)
97
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
98
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
 
 
 
 
99
  except Exception as e:
100
- print(f"Error running agent on task {task_id}: {e}")
101
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
 
 
 
102
 
103
  if not answers_payload:
104
- print("Agent did not produce any answers to submit.")
105
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
106
 
107
- # 4. Prepare Submission
108
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
109
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
110
- print(status_update)
 
111
 
112
- # 5. Submit
113
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
114
  try:
115
  response = requests.post(submit_url, json=submission_data, timeout=60)
116
  response.raise_for_status()
@@ -122,50 +92,21 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
122
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
123
  f"Message: {result_data.get('message', 'No message received.')}"
124
  )
125
- print("Submission successful.")
126
  results_df = pd.DataFrame(results_log)
127
  return final_status, results_df
128
- except requests.exceptions.HTTPError as e:
129
- error_detail = f"Server responded with status {e.response.status_code}."
130
- try:
131
- error_json = e.response.json()
132
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
133
- except requests.exceptions.JSONDecodeError:
134
- error_detail += f" Response: {e.response.text[:500]}"
135
- status_message = f"Submission Failed: {error_detail}"
136
- print(status_message)
137
- results_df = pd.DataFrame(results_log)
138
- return status_message, results_df
139
- except requests.exceptions.Timeout:
140
- status_message = "Submission Failed: The request timed out."
141
- print(status_message)
142
- results_df = pd.DataFrame(results_log)
143
- return status_message, results_df
144
- except requests.exceptions.RequestException as e:
145
- status_message = f"Submission Failed: Network error - {e}"
146
- print(status_message)
147
- results_df = pd.DataFrame(results_log)
148
- return status_message, results_df
149
  except Exception as e:
150
- status_message = f"An unexpected error occurred during submission: {e}"
151
- print(status_message)
152
- results_df = pd.DataFrame(results_log)
153
- return status_message, results_df
154
 
155
 
156
- # --- Build Gradio Interface using Blocks ---
157
  with gr.Blocks() as demo:
158
  gr.Markdown("# Basic Agent Evaluation Runner")
159
  gr.Markdown(
160
  """
161
  **Instructions:**
162
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
163
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
164
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
165
- ---
166
- **Disclaimers:**
167
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
168
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a separate action or even to answer the questions asynchronously.
169
  """
170
  )
171
 
@@ -174,7 +115,6 @@ with gr.Blocks() as demo:
174
  run_button = gr.Button("Run Evaluation & Submit All Answers")
175
 
176
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
177
- # Removed max_rows=10 from DataFrame constructor
178
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
179
 
180
  run_button.click(
@@ -183,25 +123,5 @@ with gr.Blocks() as demo:
183
  )
184
 
185
  if __name__ == "__main__":
186
- print("\n" + "-" * 30 + " App Starting " + "-" * 30)
187
- # Check for SPACE_HOST and SPACE_ID at startup for information
188
- space_host_startup = os.getenv("SPACE_HOST")
189
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
190
-
191
- if space_host_startup:
192
- print(f"✅ SPACE_HOST found: {space_host_startup}")
193
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
194
- else:
195
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
196
-
197
- if space_id_startup: # Print repo URLs if SPACE_ID is found
198
- print(f"✅ SPACE_ID found: {space_id_startup}")
199
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
200
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
201
- else:
202
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
203
-
204
- print("-" * (60 + len(" App Starting ")) + "\n")
205
-
206
- print("Launching Gradio Interface for Basic Agent Evaluation...")
207
  demo.launch(debug=True, share=False)
 
1
  """ Basic Agent Evaluation Runner"""
2
  import os
 
3
  import gradio as gr
4
  import requests
5
  import pandas as pd
6
  from langchain_core.messages import HumanMessage
7
  from agent import ninu # استيراد دالة بناء الـ agent من ملف agent.py
8
 
9
+ # Constants
 
 
10
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
11
 
 
 
 
12
  class BasicAgent:
13
  """A langgraph agent."""
14
  def __init__(self):
 
17
 
18
  def __call__(self, question: str) -> str:
19
  print(f"Agent received question (first 50 chars): {question[:50]}...")
 
20
  messages = [HumanMessage(content=question)]
21
  messages = self.graph.invoke({"messages": messages})
22
  answer = messages['messages'][-1].content
23
+ return answer[14:] # تعديل حسب البنية التي يرجعها النموذج
 
 
24
 
25
  def run_and_submit_all(profile: gr.OAuthProfile | None):
26
+ space_id = os.getenv("SPACE_ID")
 
 
 
 
 
 
27
  if profile:
28
  username = f"{profile.username}"
29
  print(f"User logged in: {username}")
 
35
  questions_url = f"{api_url}/questions"
36
  submit_url = f"{api_url}/submit"
37
 
 
38
  try:
39
  agent = BasicAgent()
40
  except Exception as e:
 
41
  return f"Error initializing agent: {e}", None
42
 
 
43
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
 
44
 
 
 
45
  try:
46
  response = requests.get(questions_url, timeout=15)
47
  response.raise_for_status()
48
  questions_data = response.json()
 
 
 
 
 
 
 
 
 
 
 
49
  except Exception as e:
50
+ return f"Error fetching questions: {e}", None
 
51
 
 
52
  results_log = []
53
  answers_payload = []
54
+
55
  for item in questions_data:
56
  task_id = item.get("task_id")
57
  question_text = item.get("question")
58
  if not task_id or question_text is None:
 
59
  continue
60
  try:
61
  submitted_answer = agent(question_text)
62
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
63
+ results_log.append({
64
+ "Task ID": task_id,
65
+ "Question": question_text,
66
+ "Submitted Answer": submitted_answer
67
+ })
68
  except Exception as e:
69
+ results_log.append({
70
+ "Task ID": task_id,
71
+ "Question": question_text,
72
+ "Submitted Answer": f"AGENT ERROR: {e}"
73
+ })
74
 
75
  if not answers_payload:
 
76
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
77
 
78
+ submission_data = {
79
+ "username": username.strip(),
80
+ "agent_code": agent_code,
81
+ "answers": answers_payload
82
+ }
83
 
 
 
84
  try:
85
  response = requests.post(submit_url, json=submission_data, timeout=60)
86
  response.raise_for_status()
 
92
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
93
  f"Message: {result_data.get('message', 'No message received.')}"
94
  )
 
95
  results_df = pd.DataFrame(results_log)
96
  return final_status, results_df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
  except Exception as e:
98
+ return f"Submission Failed: {e}", pd.DataFrame(results_log)
 
 
 
99
 
100
 
101
+ # Gradio UI
102
  with gr.Blocks() as demo:
103
  gr.Markdown("# Basic Agent Evaluation Runner")
104
  gr.Markdown(
105
  """
106
  **Instructions:**
107
+ 1. Clone this space and customize the agent logic.
108
+ 2. Log in with Hugging Face to enable submission.
109
+ 3. Click the button to run evaluation and submit all answers.
 
 
 
 
110
  """
111
  )
112
 
 
115
  run_button = gr.Button("Run Evaluation & Submit All Answers")
116
 
117
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
118
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
119
 
120
  run_button.click(
 
123
  )
124
 
125
  if __name__ == "__main__":
126
+ print("\nLaunching Gradio Interface...")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
  demo.launch(debug=True, share=False)