""" Basic Agent Evaluation Runner """ import os import gradio as gr import requests import pandas as pd from langchain_core.messages import HumanMessage from agent import ninu DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" class BasicAgent: """Agent class using LangGraph compiled graph.""" def __init__(self): print("BasicAgent initialized.") self.graph = ninu # ما تنساش: ما تعملش () هنا لأن `ninu` هو كائن compiled def __call__(self, question: str) -> str: print(f"Agent received question (first 50 chars): {question[:50]}...") messages = [HumanMessage(content=question)] result = self.graph.invoke({"messages": messages}) for message in reversed(result["messages"]): if isinstance(message.content, str) and "FINAL ANSWER:" in message.content: return message.content.split("FINAL ANSWER:")[-1].strip() return "لم أتمكن من إيجاد إجابة نهائية." def run_and_submit_all(profile: gr.OAuthProfile | None): space_id = os.getenv("SPACE_ID") if profile: username = f"{profile.username}" print(f"User logged in: {username}") else: print("User not logged in.") return "Please Login to Hugging Face with the button.", None api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" try: agent = BasicAgent() except Exception as e: return f"Error initializing agent: {e}", None agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() except Exception as e: return f"Error fetching questions: {e}", None results_log = [] answers_payload = [] for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: continue try: submitted_answer = agent(question_text) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({ "Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer }) except Exception as e: results_log.append({ "Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}" }) if not answers_payload: return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) submission_data = { "username": username.strip(), "agent_code": agent_code, "answers": answers_payload } try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) results_df = pd.DataFrame(results_log) return final_status, results_df except Exception as e: return f"Submission Failed: {e}", pd.DataFrame(results_log) # Gradio UI with gr.Blocks() as demo: gr.Markdown("# Basic Agent Evaluation Runner") gr.Markdown( """ **Instructions:** 1. Clone this space and customize the agent logic. 2. Log in with Hugging Face to enable submission. 3. Click the button to run evaluation and submit all answers. """ ) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click( fn=run_and_submit_all, outputs=[status_output, results_table] ) if __name__ == "__main__": print("\nLaunching Gradio Interface...") demo.launch(debug=True, share=False)