Ali231a's picture
Update app.py
8d9c3ff verified
import gradio as gr
import requests
import os
# Model settings
MODEL_NAME = "Canstralian/pentest_ai"
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
# Function to query the Hugging Face model
def query_hf(prompt):
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
payload = {"inputs": prompt, "parameters": {"max_new_tokens": 300, "return_full_text": False}}
try:
response = requests.post(
f"https://api-inference.huggingface.co/models/{MODEL_NAME}",
headers=headers,
json=payload
)
response.raise_for_status() # Raise an error for bad responses
data = response.json()
# Handle different response formats
if isinstance(data, list) and "generated_text" in data[0]:
return data[0]["generated_text"].strip()
elif isinstance(data, dict) and "generated_text" in data:
return data["generated_text"].strip()
else:
return str(data).strip() # Fallback to string representation
except Exception as e:
return f"Error querying model: {str(e)}"
# Chat function for Gradio
def chat_fn(message, history):
# Initialize history if empty
if not history:
history = []
# Create prompt with history
prompt = "You are a cybersecurity expert specializing in penetration testing. Provide clear, ethical, and actionable steps.\n"
for msg in history:
prompt += f"User: {msg['user']}\nAssistant: {msg['assistant']}\n"
prompt += f"User: {message}\nAssistant: "
# Get response from the model
response = query_hf(prompt)
# Return user and assistant messages as dictionaries
return {"user": message, "assistant": response}
# Create Gradio interface
with gr.Blocks() as demo:
chatbot = gr.Chatbot(type="messages")
msg = gr.Textbox(placeholder="Ask about pentesting (e.g., 'How do I scan with Nmap?')")
clear = gr.Button("Clear Chat")
def submit_message(message, chatbot):
history = chatbot if chatbot else []
response = chat_fn(message, history)
history.append(response)
return history, ""
msg.submit(submit_message, [msg, chatbot], [chatbot, msg])
clear.click(lambda: [], None, chatbot)
# Launch the app with custom title and description
demo.launch()