File size: 2,926 Bytes
1e4d453
b0c5c57
1e4d453
 
 
b0c5c57
1e4d453
8a23f94
b0c5c57
1e4d453
b0c5c57
 
 
1e4d453
8a23f94
 
b0c5c57
 
8a23f94
 
 
 
 
b0c5c57
 
 
 
8a23f94
662dec3
b0c5c57
 
 
 
 
 
 
662dec3
8a23f94
 
 
 
 
 
a2e31df
8a23f94
662dec3
8a23f94
b0c5c57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a23f94
 
b0c5c57
 
 
1e4d453
b0c5c57
1e4d453
 
b0c5c57
1e4d453
b0c5c57
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import cv2
import torch
import numpy as np
import gradio as gr
import paddlehub as hub
from PIL import Image
from methods.img2pixl import pixL
from examples.pixelArt.combine import combine

model = hub.Module(name='U2Net')
device = "cuda" if torch.cuda.is_available() else "cpu"
face2paint = torch.hub.load("bryandlee/animegan2-pytorch:main", "face2paint", device=device, size=512)
model = torch.hub.load("bryandlee/animegan2-pytorch", "generator", device=device).eval()

def GIF(fname,pixel_size):
    gif = Image.open(fname)
    frames = [] 
    for i in range(gif.n_frames): #First Step: Splitting the GIF into frames
        gif.seek(i)
        frame = Image.new('RGB', gif.size)
        frame.paste(gif)
        frame = np.array(frame)
        frames.append(frame)
    result = pixL().toThePixL(frames, pixel_size)
    for frame in result:          #Second Step: Adding Cartoon Effect to each frame
        frame = Image.fromarray(frame)
        frame = cv2.cvtColor(np.asarray(face2paint(model, frame)), cv2.COLOR_BGR2RGB)
    frames = []
<<<<<<< HEAD
    for frame in result:          #Third Step: Combining the frames into a GIF
      frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
      frame = Image.fromarray(frame)    
      frames.append(frame)
    frames[0].save('cache.gif', append_images=frames, save_all=True, loop=1)
    cache = Image.open('cache.gif')
    return cache
=======
    for frame in result:
        
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        frame = Image.fromarray(frame)    
        frames.append(frame)
    print(type(frames), len(frames), type(frames[0]), frames[0].size)
    frames[0].save('cache.gif', append_images=frames, save_all=True, loop=1)
    return Image.open('cache.gif')
>>>>>>> a2e31df8118400de0782a9feb55255620b93cd83

def initilize(image,pixel_size,checkbox1):
    if image.name.endswith('.gif'):
      GIF(image.name,pixel_size)
    else:
      image = Image.open(image.name).convert("RGB")
      image = cv2.cvtColor(np.asarray(face2paint(model, image)), cv2.COLOR_BGR2RGB)
      if checkbox1:
        result = model.Segmentation(
        images=[image],
        paths=None,
        batch_size=1,
        input_size=320,  
        output_dir='output',
        visualization=True)
        result = combine.combiner(images = pixL().toThePixL([result[0]['front'][:,:,::-1], result[0]['mask']], 
                                                        pixel_size),
                                background_image = image)
      else:
        result = pixL().toThePixL([image], pixel_size)
      return Image.fromarray(result)

inputs = ["file",
               gr.Slider(4, 100, value=12, step = 2, label="Pixel Size"),
               gr.Checkbox(label="Object-Oriented Inference", value=False)]
outputs = [gr.Image(type="pil",label="Front")]

gr.Interface(fn = initilize,
                    inputs = inputs,
                    outputs = outputs).launch()