import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM @st.cache_resource(show_spinner=False) def load_model(): model_name = "Alijeff1214/DeutscheLexAI_BGB_2.0" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) return tokenizer, model tokenizer, model = load_model() st.title("DeutscheLexAI_BGB Chat Interface") st.write("Interact with the fine-tuned Qwen2.5-3B model for German legal texts!") user_input = st.text_input("Enter your question or prompt:") if st.button("Generate Response") and user_input: # Tokenize and generate response (adjust parameters as needed) inputs = tokenizer(user_input, return_tensors="pt") outputs = model.generate(**inputs, max_length=500, do_sample=True, temperature=0.7) response = tokenizer.decode(outputs[0], skip_special_tokens=True) st.text_area("Model Response:", value=response, height=300)