File size: 7,588 Bytes
37eab4f
 
 
 
 
 
 
e310d9f
37eab4f
 
 
 
 
 
 
 
 
e310d9f
37eab4f
 
e310d9f
37eab4f
 
 
 
 
 
 
 
 
 
 
 
 
 
e310d9f
37eab4f
 
e310d9f
37eab4f
 
e310d9f
 
 
37eab4f
 
 
 
 
b763daf
 
 
37eab4f
 
 
 
 
 
 
 
 
 
 
e310d9f
37eab4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e310d9f
37eab4f
 
 
 
e310d9f
 
 
 
 
 
 
 
 
 
37eab4f
e310d9f
37eab4f
e310d9f
 
 
 
 
 
37eab4f
 
e310d9f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gradio as gr
import json
import pandas as pd
from Engine import Engine

def run_study(mode, benchmark_func, optimizers, dim, dataset, epochs, batch_size, lr, use_sa, sa_temp, sa_cooling_rate):
    # Ensure optimizers is a list
    optimizers = [optimizers] if isinstance(optimizers, str) else optimizers or []
    
    if not optimizers:
        raise gr.Error("Please select at least one optimizer.")
    if mode == "Benchmark Optimization" and not benchmark_func:
        raise gr.Error("Please select a benchmark function.")
    if mode == "ML Task Training" and not dataset:
        raise gr.Error("Please select a dataset.")

    config = {
        'mode': 'benchmark' if mode == "Benchmark Optimization" else 'ml_task',
        'benchmark_func': benchmark_func,
        'optimizers': optimizers,
        'dim': int(dim) if dim else 2,
        'dataset': dataset,
        'epochs': int(epochs) if epochs else 10,
        'batch_size': int(batch_size) if batch_size else 32,
        'lr': float(lr) if lr else 0.001,
        'use_sa': use_sa if 'AzureSky' in optimizers else None,
        'sa_temp': float(sa_temp) if 'AzureSky' in optimizers and use_sa else None,
        'sa_cooling_rate': float(sa_cooling_rate) if 'AzureSky' in optimizers and use_sa else None,
        'max_iter': 100
    }
    runner = Engine()
    results = runner.run(config)

    if config['mode'] == 'benchmark':
        metrics_df = pd.DataFrame(results['metrics'], index=config['optimizers'])
        return results['plot'], None, metrics_df, json.dumps(results, indent=2), "Study completed successfully."
    else:
        metrics_df = pd.DataFrame(results['metrics'], index=config['optimizers'])
        return results['plot_acc'], results['plot_loss'], metrics_df, json.dumps(results, indent=2), "Study completed successfully."

def export_results(results_json):
    with open("results.json", "w") as f:
        f.write(results_json)
    return "results.json"

def toggle_azure_settings(optimizers):
    optimizers = [optimizers] if isinstance(optimizers, str) else optimizers or []
    return gr.update(visible='AzureSky' in optimizers)

def toggle_tabs(mode):
    return gr.update(visible=mode == 'Benchmark Optimization'), gr.update(visible=mode == 'ML Task Training')

with gr.Blocks(theme=gr.themes.Soft(), title="Nexa R&D Studio", css="""
    .gr-button { margin-top: 10px; }
    .gr-box { border-radius: 8px; }
    .status-message { color: green; font-weight: bold; }
""") as app:
    gr.Markdown("""
        # Nexa R&D Studio
        A visual research tool for comparing and evaluating optimizers on benchmark functions and ML tasks.
        Select a mode, configure your study, and analyze results with interactive plots and metrics.
    """)

    with gr.Tabs():
        with gr.TabItem("Study Configuration"):
            mode = gr.Radio(
                ['Benchmark Optimization', 'ML Task Training'],
                label='Study Mode',
                value='Benchmark Optimization',
                info='Choose between optimizing benchmark functions or training on ML datasets.'
            )

            with gr.Row():
                with gr.Column():
                    optimizers = gr.CheckboxGroup(
                        ['AzureSky', 'Adam', 'SGD', 'AdamW', 'RMSprop'],
                        label='Optimizers',
                        info='Select optimizers to compare. AzureSky includes a Simulated Annealing option.'
                    )
                    with gr.Accordion("AzureSky Ablation Settings", open=False, visible=False) as azure_settings:
                        use_sa = gr.Checkbox(
                            label='Enable Simulated Annealing (AzureSky)',
                            value=True,
                            info='Toggle Simulated Annealing for AzureSky optimizer.'
                        )
                        sa_temp = gr.Number(
                            label='Initial SA Temperature',
                            value=1.0,
                            minimum=0.1,
                            info='Controls exploration in Simulated Annealing (higher = more exploration).'
                        )
                        sa_cooling_rate = gr.Number(
                            label='SA Cooling Rate',
                            value=0.95,
                            minimum=0.1,
                            maximum=0.99,
                            info='Rate at which SA temperature decreases (closer to 1 = slower cooling).'
                        )

                with gr.Column():
                    with gr.Group(visible=True) as benchmark_tab:
                        benchmark_func = gr.Dropdown(
                            ['Himmelblau', 'Ackley', 'Adjiman', 'Brent'],
                            label='Benchmark Function',
                            info='Select a mathematical function to optimize.'
                        )
                        dim = gr.Number(
                            label='Dimensionality',
                            value=2,
                            minimum=2,
                            info='Number of dimensions for the benchmark function.'
                        )
                    with gr.Group(visible=False) as ml_task_tab:
                        dataset = gr.Dropdown(
                            ['MNIST', 'CIFAR-10'],
                            label='Dataset',
                            info='Select a dataset for ML training.'
                        )
                        epochs = gr.Number(
                            label='Epochs',
                            value=10,
                            minimum=1,
                            info='Number of training epochs.'
                        )
                        batch_size = gr.Number(
                            label='Batch Size',
                            value=32,
                            minimum=1,
                            info='Number of samples per training batch.'
                        )
                        lr = gr.Number(
                            label='Learning Rate',
                            value=0.001,
                            minimum=0,
                            info='Learning rate for optimizers.'
                        )

            run_button = gr.Button('Run Study', variant='primary')

        with gr.TabItem("Results"):
            status_message = gr.Markdown("Configure and run a study to view results.", elem_classes=["status-message"])
            with gr.Row():
                plot1 = gr.Plot(label='Main Plot (Benchmark or Accuracy)')
                plot2 = gr.Plot(label='Loss Plot (ML Mode)')
            metrics_df = gr.Dataframe(label='Metrics Table')
            metrics_json = gr.JSON(label='Detailed Metrics')
            export_button = gr.Button('Export Results as JSON')
            export_file = gr.File(label='Download Results')

    mode.change(
        fn=toggle_tabs,
        inputs=mode,
        outputs=[benchmark_tab, ml_task_tab]
    )
    optimizers.change(
        fn=toggle_azure_settings,
        inputs=optimizers,
        outputs=azure_settings
    )
    run_button.click(
        fn=run_study,
        inputs=[mode, benchmark_func, optimizers, dim, dataset, epochs, batch_size, lr, use_sa, sa_temp, sa_cooling_rate],
        outputs=[plot1, plot2, metrics_df, metrics_json, status_message]
    )
    export_button.click(
        fn=export_results,
        inputs=metrics_json,
        outputs=export_file
    )

# Launch without share parameter for Hugging Face Spaces
app.launch()