Spaces:
Sleeping
Sleeping
File size: 2,232 Bytes
1b579d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import torch
import torch.nn as nn
from azure_optimizer import Azure # Assuming the above class is in a module named azure_optimizer
# Define a simple model for demonstration
class SimpleModel(nn.Module):
def __init__(self):
super().__init__()
self.base = nn.Linear(10, 5)
self.classifier = nn.Linear(5, 2)
def forward(self, x):
x = torch.relu(self.base(x))
return self.classifier(x)
# Initialize model and sample variables
model = SimpleModel()
var1 = torch.nn.Parameter(torch.randn(2, 2))
var2 = torch.nn.Parameter(torch.randn(2, 2))
inputs = torch.randn(32, 10)
targets = torch.randint(0, 2, (32,))
criterion = nn.CrossEntropyLoss()
# Example 1: Basic usage with model.parameters()
optimizer = Azure(model.parameters())
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
# Example 2: List of parameters
optimizer = Azure([var1, var2])
optimizer.zero_grad()
loss = criterion(var1 @ var2, torch.zeros_like(var1 @ var2))
loss.backward()
optimizer.step()
# Example 3: Named parameters
optimizer = Azure(model.named_parameters())
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
# Example 4: Named parameters in a list (invalid, will be handled by the class)
optimizer = Azure([('layer0', var1), ('layer1', var2)]) # The class converts this to a parameter list
optimizer.zero_grad()
loss = criterion(var1 @ var2, torch.zeros_like(var1 @ var2))
loss.backward()
optimizer.step()
# Example 5: Parameter groups with different learning rates
optimizer = Azure([
{'params': model.base.parameters(), 'lr': 1e-2},
{'params': model.classifier.parameters()}
])
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
# Example 6: Parameter groups with named parameters
optimizer = Azure([
{'params': model.base.named_parameters(), 'lr': 1e-2},
{'params': model.classifier.named_parameters()}
])
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
|