Nexa / Backend /Benchmarks /Himmelblau.py
Allanatrix's picture
Upload 31 files
bc75bfa verified
raw
history blame
1.13 kB
# Himmelblau function benchmark
from time import time
from .Base import BaseBenchmark
from numpy.random import default_rng
from scipy.optimize import minimize
class Himmelblau(BaseBenchmark):
"""Himmelblau's function benchmark."""
def __init__(self):
super().__init__()
self.name = "Himmelblau"
self.dimensions = 2
self.global_minimum = [3, 2]
self.global_minimum_value = 0
@staticmethod
def evaluate(x):
"""Evaluate the Himmelblau function."""
return (x[0]**2 + x[1] - 11)**2 + (x[0] + x[1]**2 - 7)**2
def himmelblau(x):
"""Himmelblau's function."""
return (x[0]**2 + x[1] - 11)**2 + (x[0] + x[1]**2 - 7)**2
def benchmark_himmelblau():
"""Benchmark the Himmelblau function."""
rng = default_rng()
x0 = rng.uniform(-5, 5, size=2)
start_time = time()
result = minimize(himmelblau, x0, method='BFGS')
end_time = time()
print(f"Optimized parameters: {result.x}")
print(f"Function value at optimum: {result.fun}")
print(f"Time taken: {end_time - start_time:.4f} seconds")