Spaces:
Running
Running
# RmsProp optimizer implementation | |
from abc import ABC | |
from .base import BaseOptimizer | |
class RMSpropOptimizer(BaseOptimizer, ABC): | |
""" | |
RMSprop optimizer implementation. | |
This optimizer uses a moving average of squared gradients to normalize the gradient. | |
""" | |
def __init__(self, params, lr=0.001, alpha=0.99, eps=1e-8): | |
self.params = params | |
self.lr = lr | |
self.alpha = alpha | |
self.eps = eps | |
self.state = {p: {'mean_square': 0} for p in params} | |
def step(self): | |
for p in self.params: | |
if p.grad is None: | |
continue | |
state = self.state[p] | |
state['mean_square'] = self.alpha * state['mean_square'] + (1 - self.alpha) * (p.grad ** 2) | |
p.data -= self.lr * p.grad / (state['mean_square'].sqrt() + self.eps) | |
def zero_grad(self): | |
for p in self.params: | |
p.grad = 0 | |
def __repr__(self): | |
return f"RMSpropOptimizer(lr={self.lr}, alpha={self.alpha}, eps={self.eps})" | |
def state_dict(self): | |
return {p: {'mean_square': state['mean_square']} for p, state in self.state.items()} | |