# Ackley N 2 function Benchmark import numpy as np from scipy.optimize import minimize from .Base import BaseBenchmark class AckleyN2(BaseBenchmark): """Ackley N 2 function benchmark.""" def __init__(self): super().__init__() self.name = "Ackley N 2" self.dimensions = 10 self.global_minimum = [0] * self.dimensions self.global_minimum_value = 0.0 @staticmethod def evaluate(x): """Evaluate the Ackley N 2 function.""" a = 20 b = 0.2 c = 2 * np.pi n = len(x) sum1 = sum(xi**2 for xi in x) sum2 = sum(np.cos(c * xi) for xi in x) term1 = -a * np.exp(-b * np.sqrt(sum1 / n)) term2 = -np.exp(sum2 / n) return term1 + term2 + a + np.exp(1) def ackley_n2(x): """Ackley N 2 function.""" a = 20 b = 0.2 c = 2 * np.pi n = len(x) sum1 = sum(xi**2 for xi in x) sum2 = sum(np.cos(c * xi) for xi in x) term1 = -a * np.exp(-b * np.sqrt(sum1 / n)) term2 = -np.exp(sum2 / n) return term1 + term2 + a + np.exp(1) def benchmark_ackley_n2(): """Benchmark the Ackley N 2 function.""" x0 = np.random.uniform(-5, 5, size=10) result = minimize(ackley_n2, x0, method='BFGS') print(f"Optimized parameters: {result.x}") print(f"Function value at optimum: {result.fun}") print("Optimization successful:", result.success) if __name__ == "__main__": benchmark_ackley_n2()