# Adjiman function benchmark import numpy as np from scipy.optimize import minimize from .Base import BaseBenchmark class Adjiman(BaseBenchmark): """Adjiman's function benchmark.""" def __init__(self): super().__init__() self.name = "Adjiman" self.dimensions = 2 self.global_minimum = [0, 0] self.global_minimum_value = 0.5 @staticmethod def evaluate(x): """Evaluate Adjiman's function.""" x1, x2 = x term1 = (x1**2 + x2**2)**0.5 term2 = np.sin(term1) term3 = np.exp(-term1) return 0.5 * (term1 + term2 + term3) def adjiman(x): """Adjiman's function.""" x1, x2 = x term1 = (x1**2 + x2**2)**0.5 term2 = np.sin(term1) term3 = np.exp(-term1) return 0.5 * (term1 + term2 + term3) def benchmark_adjiman(): """Benchmark the Adjiman function.""" x0 = np.random.uniform(-5, 5, size=2) result = minimize(adjiman, x0, method='BFGS') print(f"Optimized parameters: {result.x}") print(f"Function value at optimum: {result.fun}") print("Optimization successful:", result.success) if __name__ == "__main__": benchmark_adjiman()