# Fashion MNIST dataset classification using PyTorch from torch.utils.data import DataLoader from torchvision import datasets, transforms def load_fashion_mnist(batch_size=64, num_workers=2, download=True): """Load Fashion MNIST dataset.""" transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ]) train_dataset = datasets.FashionMNIST(root='./data', train=True, download=download, transform=transform) test_dataset = datasets.FashionMNIST(root='./data', train=False, download=download, transform=transform) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers) return train_loader, test_loader def run_fashion_mnist(): """Run Fashion MNIST dataset loading and basic iteration.""" train_loader, test_loader = load_fashion_mnist(batch_size=64, num_workers=2, download=True) # Example: Iterate through the training data for images, labels in train_loader: print(f"Batch size: {images.size(0)}, Image shape: {images.shape}, Labels: {labels}") break # Remove this break to iterate through all batches if __name__ == "__main__": train_loader, test_loader = load_fashion_mnist(batch_size=64, num_workers=2, download=True) # Example: Iterate through the training data for images, labels in train_loader: print(f"Batch size: {images.size(0)}, Image shape: {images.shape}, Labels: {labels}") break # Remove this break to iterate through all batches