# Adam optimizer implementation from .base import BaseOptimizer class AdamOptimizer(BaseOptimizer): """ Adam optimizer implementation. """ def __init__(self, params, lr=0.001, betas=(0.9, 0.999), eps=1e-8): self.params = params self.lr = lr self.betas = betas self.eps = eps self.state = {p: {'m': 0, 'v': 0, 't': 0} for p in params} def step(self): for p in self.params: state = self.state[p] state['t'] += 1 # Update biased first moment estimate state['m'] = self.betas[0] * state['m'] + (1 - self.betas[0]) * p.grad # Update biased second raw moment estimate state['v'] = self.betas[1] * state['v'] + (1 - self.betas[1]) * (p.grad ** 2) # Compute bias-corrected first moment estimate m_hat = state['m'] / (1 - self.betas[0] ** state['t']) # Compute bias-corrected second raw moment estimate v_hat = state['v'] / (1 - self.betas[1] ** state['t']) # Update parameters p.data -= self.lr * m_hat / (v_hat.sqrt() + self.eps) def zero_grad(self): for p in self.params: p.grad = 0 def state_dict(self): return {p: {'m': state['m'], 'v': state['v'], 't': state['t']} for p, state in self.state.items()} def load_state_dict(self, state_dict): for p in self.params: if p in state_dict: self.state[p] = state_dict[p] def __repr__(self): return f"AdamOptimizer(lr={self.lr}, betas={self.betas}, eps={self.eps})"