# AdamW implementation from .adam import AdamOptimizer class AdamWOptimizer(AdamOptimizer): """ AdamW optimizer implementation. This optimizer decouples weight decay from the optimization steps. """ def __init__(self, params, lr=0.001, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.01): super().__init__(params, lr, betas, eps) self.weight_decay = weight_decay def step(self): for p in self.params: if p.grad is None: continue state = self.state[p] state['t'] += 1 # Update biased first moment estimate state['m'] = self.betas[0] * state['m'] + (1 - self.betas[0]) * p.grad # Update biased second raw moment estimate state['v'] = self.betas[1] * state['v'] + (1 - self.betas[1]) * (p.grad ** 2) # Compute bias-corrected first moment estimate m_hat = state['m'] / (1 - self.betas[0] ** state['t']) # Compute bias-corrected second raw moment estimate v_hat = state['v'] / (1 - self.betas[1] ** state['t']) # Update parameters with weight decay p.data -= self.lr * (m_hat / (v_hat.sqrt() + self.eps) + self.weight_decay * p.data) def __repr__(self): return f"AdamWOptimizer(lr={self.lr}, betas={self.betas}, eps={self.eps}, weight_decay={self.weight_decay})"