Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,59 +1,39 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import
|
4 |
|
5 |
-
# Data for
|
6 |
TABULAR_MODEL_EVALS = {
|
7 |
"Proteins": {
|
8 |
-
"Nexa Bio1 (Secondary)":
|
9 |
-
"Porter6 (Secondary)":
|
10 |
-
"DeepCNF (Secondary)":
|
11 |
-
"AlphaFold2 (Tertiary GDT-TS)":
|
12 |
-
"Nexa Bio2 (Tertiary)": 0
|
13 |
},
|
14 |
"Astro": {
|
15 |
-
"Nexa Astro":
|
16 |
-
"Baseline CNN":
|
17 |
},
|
18 |
"Materials": {
|
19 |
-
"Nexa Materials": 0
|
20 |
-
"Random Forest Baseline":
|
21 |
},
|
22 |
"QST": {
|
23 |
-
"Nexa PIN Model": 0
|
24 |
-
"Quantum TomoNet":
|
25 |
},
|
26 |
"HEP": {
|
27 |
-
"Nexa HEP Model":
|
28 |
-
"CMSNet":
|
29 |
},
|
30 |
"CFD": {
|
31 |
-
"Nexa CFD Model":
|
32 |
-
"FlowNet":
|
33 |
},
|
34 |
}
|
35 |
|
36 |
-
# Data for
|
37 |
-
LLM_MODEL_EVALS = {
|
38 |
-
"LLM (General OSIR)": {
|
39 |
-
"Nexa Mistral Sci-7B": 0.61,
|
40 |
-
"Llama-3-8B-Instruct": 0.39,
|
41 |
-
"Mixtral-8x7B-Instruct-v0.1": 0.41,
|
42 |
-
"Claude-3-Sonnet": 0.64,
|
43 |
-
"GPT-4-Turbo": 0.68,
|
44 |
-
"GPT-4o": 0.71,
|
45 |
-
},
|
46 |
-
"LLM (Field-Specific OSIR)": {
|
47 |
-
"Nexa Bio Adapter": 0.66,
|
48 |
-
"Nexa Astro Adapter": 0.70,
|
49 |
-
"GPT-4o (Biomed)": 0.69,
|
50 |
-
"Claude-3-Opus (Bio)": 0.67,
|
51 |
-
"Llama-3-8B-Bio": 0.42,
|
52 |
-
"Mixtral-8x7B-BioTune": 0.43,
|
53 |
-
},
|
54 |
-
}
|
55 |
-
|
56 |
-
# Data for Nexa Mistral Sci-7B Evaluation (based on the provided image)
|
57 |
NEXA_MISTRAL_EVALS = {
|
58 |
"Nexa Mistral Sci-7B": {
|
59 |
"Scientific Utility": {"OSIR (General)": 7.0, "OSIR-Field (Physics)": 8.5},
|
@@ -66,86 +46,55 @@ NEXA_MISTRAL_EVALS = {
|
|
66 |
}
|
67 |
}
|
68 |
|
69 |
-
#
|
70 |
-
def
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
fig.update_layout(
|
84 |
-
title=f"Model Benchmark Scores — {domain}",
|
85 |
-
xaxis_title="Score",
|
86 |
-
yaxis_title="Model",
|
87 |
-
xaxis_range=[0, 1.0],
|
88 |
-
template="plotly_white",
|
89 |
-
height=500,
|
90 |
-
margin=dict(l=120, r=20, t=40, b=40),
|
91 |
-
yaxis=dict(automargin=True),
|
92 |
-
)
|
93 |
return fig
|
94 |
|
95 |
-
#
|
96 |
-
def plot_mistral_eval(metric):
|
97 |
-
if metric not in NEXA_MISTRAL_EVALS["Nexa Mistral Sci-7B"]:
|
98 |
-
return None, "Invalid metric selected"
|
99 |
-
data = NEXA_MISTRAL_EVALS["Nexa Mistral Sci-7B"][metric]
|
100 |
-
models = list(data.keys())
|
101 |
-
scores = list(data.values())
|
102 |
-
|
103 |
-
fig = go.Figure()
|
104 |
-
fig.add_trace(go.Bar(
|
105 |
-
x=scores,
|
106 |
-
y=models,
|
107 |
-
orientation='h',
|
108 |
-
marker_color=['yellow', 'orange'] # Matching the provided image colors
|
109 |
-
))
|
110 |
-
|
111 |
-
fig.update_layout(
|
112 |
-
title=f"Nexa Mistral Sci-7B Evaluation: {metric}",
|
113 |
-
xaxis_title="Score (1-10)",
|
114 |
-
yaxis_title="Model",
|
115 |
-
xaxis_range=[0, 10],
|
116 |
-
template="plotly_black",
|
117 |
-
height=400,
|
118 |
-
margin=dict(l=120, r=20, t=40, b=40),
|
119 |
-
yaxis=dict(automargin=True),
|
120 |
-
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
|
121 |
-
)
|
122 |
-
return fig
|
123 |
-
|
124 |
-
# Display functions for each section
|
125 |
def display_tabular_eval(domain):
|
126 |
-
|
127 |
-
return None, "Invalid domain selected"
|
128 |
-
plot = plot_horizontal_bar(domain, TABULAR_MODEL_EVALS[domain], highlight_color='indigo', default_color='lightgray')
|
129 |
-
details = json.dumps(TABULAR_MODEL_EVALS[domain], indent=2)
|
130 |
-
return plot, details
|
131 |
|
132 |
def display_llm_eval(domain):
|
133 |
-
|
134 |
-
return None, "Invalid domain selected"
|
135 |
-
plot = plot_horizontal_bar(domain, LLM_MODEL_EVALS[domain], highlight_color='lightblue', default_color='gray')
|
136 |
-
details = json.dumps(LLM_MODEL_EVALS[domain], indent=2)
|
137 |
-
return plot, details
|
138 |
|
139 |
def display_mistral_eval(metric):
|
140 |
-
|
141 |
-
details = json.dumps(NEXA_MISTRAL_EVALS["Nexa Mistral Sci-7B"][metric], indent=2)
|
142 |
-
return plot, details
|
143 |
|
144 |
-
# Gradio interface
|
145 |
-
with gr.Blocks(css="body {font-family: 'Inter', sans-serif; background-color: #
|
146 |
gr.Markdown("""
|
147 |
# 🔬 Nexa Evals — Scientific ML Benchmark Suite
|
148 |
-
A
|
149 |
""")
|
150 |
|
151 |
with gr.Tabs():
|
@@ -158,11 +107,10 @@ with gr.Blocks(css="body {font-family: 'Inter', sans-serif; background-color: #f
|
|
158 |
)
|
159 |
show_tabular_btn = gr.Button("Show Evaluation")
|
160 |
tabular_plot = gr.Plot(label="Benchmark Plot")
|
161 |
-
tabular_details = gr.Code(label="Raw Scores (JSON)", language="json")
|
162 |
show_tabular_btn.click(
|
163 |
fn=display_tabular_eval,
|
164 |
inputs=tabular_domain,
|
165 |
-
outputs=
|
166 |
)
|
167 |
|
168 |
with gr.TabItem("LLMs"):
|
@@ -174,11 +122,10 @@ with gr.Blocks(css="body {font-family: 'Inter', sans-serif; background-color: #f
|
|
174 |
)
|
175 |
show_llm_btn = gr.Button("Show Evaluation")
|
176 |
llm_plot = gr.Plot(label="Benchmark Plot")
|
177 |
-
llm_details = gr.Code(label="Raw Scores (JSON)", language="json")
|
178 |
show_llm_btn.click(
|
179 |
fn=display_llm_eval,
|
180 |
inputs=llm_domain,
|
181 |
-
outputs=
|
182 |
)
|
183 |
|
184 |
with gr.TabItem("Nexa Mistral Sci-7B"):
|
@@ -190,21 +137,20 @@ with gr.Blocks(css="body {font-family: 'Inter', sans-serif; background-color: #f
|
|
190 |
)
|
191 |
show_mistral_btn = gr.Button("Show Evaluation")
|
192 |
mistral_plot = gr.Plot(label="Benchmark Plot")
|
193 |
-
mistral_details = gr.Code(label="Raw Scores (JSON)", language="json")
|
194 |
show_mistral_btn.click(
|
195 |
fn=display_mistral_eval,
|
196 |
inputs=mistral_metric,
|
197 |
-
outputs=
|
198 |
)
|
199 |
|
200 |
-
gr.
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
|
210 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import numpy as np
|
4 |
|
5 |
+
# Data for Tabular Models (normalized to 0-10 from original 0-1 data)
|
6 |
TABULAR_MODEL_EVALS = {
|
7 |
"Proteins": {
|
8 |
+
"Nexa Bio1 (Secondary)": 7.1,
|
9 |
+
"Porter6 (Secondary)": 8.5,
|
10 |
+
"DeepCNF (Secondary)": 8.5,
|
11 |
+
"AlphaFold2 (Tertiary GDT-TS)": 9.2,
|
12 |
+
"Nexa Bio2 (Tertiary)": 9.0,
|
13 |
},
|
14 |
"Astro": {
|
15 |
+
"Nexa Astro": 9.7,
|
16 |
+
"Baseline CNN": 8.9,
|
17 |
},
|
18 |
"Materials": {
|
19 |
+
"Nexa Materials": 10.0,
|
20 |
+
"Random Forest Baseline": 9.2,
|
21 |
},
|
22 |
"QST": {
|
23 |
+
"Nexa PIN Model": 8.0,
|
24 |
+
"Quantum TomoNet": 8.5,
|
25 |
},
|
26 |
"HEP": {
|
27 |
+
"Nexa HEP Model": 9.1,
|
28 |
+
"CMSNet": 9.4,
|
29 |
},
|
30 |
"CFD": {
|
31 |
+
"Nexa CFD Model": 9.2,
|
32 |
+
"FlowNet": 8.9,
|
33 |
},
|
34 |
}
|
35 |
|
36 |
+
# Data for Nexa Mistral Sci-7B Evaluation (from your image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
NEXA_MISTRAL_EVALS = {
|
38 |
"Nexa Mistral Sci-7B": {
|
39 |
"Scientific Utility": {"OSIR (General)": 7.0, "OSIR-Field (Physics)": 8.5},
|
|
|
46 |
}
|
47 |
}
|
48 |
|
49 |
+
# Plotting function using Matplotlib
|
50 |
+
def plot_comparison(domain, data_type):
|
51 |
+
if data_type == "mistral":
|
52 |
+
metric = domain
|
53 |
+
data = NEXA_MISTRAL_EVALS["Nexa Mistral Sci-7B"][metric]
|
54 |
+
models = list(data.keys())
|
55 |
+
scores = list(data.values())
|
56 |
+
fig, ax = plt.subplots(figsize=(8, 6), facecolor='#e0e0e0')
|
57 |
+
y_pos = np.arange(len(models))
|
58 |
+
width = 0.35
|
59 |
+
ax.barh(y_pos - width/2, scores[:1], width, label=models[0], color='yellow')
|
60 |
+
ax.barh(y_pos + width/2, scores[1:], width, label=models[1], color='orange')
|
61 |
+
else:
|
62 |
+
data = TABULAR_MODEL_EVALS[domain] if data_type == "tabular" else LLM_MODEL_EVALS[domain]
|
63 |
+
models = list(data.keys())
|
64 |
+
scores = list(data.values())
|
65 |
+
fig, ax = plt.subplots(figsize=(8, 6), facecolor='#e0e0e0')
|
66 |
+
y_pos = np.arange(len(models))
|
67 |
+
width = 0.8
|
68 |
+
colors = ['indigo' if 'Nexa' in model else 'lightgray' if data_type == "tabular" else 'gray' for model in models]
|
69 |
+
ax.barh(y_pos, scores, width, color=colors)
|
70 |
+
|
71 |
+
ax.set_yticks(y_pos)
|
72 |
+
ax.set_yticklabels(models)
|
73 |
+
ax.set_xlabel('Score (1-10)')
|
74 |
+
ax.set_title(f"{('Nexa Mistral Sci-7B Evaluation: ' if data_type == 'mistral' else '')}{domain}")
|
75 |
+
ax.set_xlim(0, 10)
|
76 |
+
if data_type == "mistral":
|
77 |
+
ax.legend()
|
78 |
+
ax.grid(True, axis='x', linestyle='--', alpha=0.7)
|
79 |
+
plt.tight_layout()
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
return fig
|
82 |
|
83 |
+
# Display functions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
def display_tabular_eval(domain):
|
85 |
+
return plot_comparison(domain, "tabular")
|
|
|
|
|
|
|
|
|
86 |
|
87 |
def display_llm_eval(domain):
|
88 |
+
return plot_comparison(domain, "llm")
|
|
|
|
|
|
|
|
|
89 |
|
90 |
def display_mistral_eval(metric):
|
91 |
+
return plot_comparison(metric, "mistral")
|
|
|
|
|
92 |
|
93 |
+
# Gradio interface
|
94 |
+
with gr.Blocks(css="body {font-family: 'Inter', sans-serif; background-color: #e0e0e0; color: #333;}") as demo:
|
95 |
gr.Markdown("""
|
96 |
# 🔬 Nexa Evals — Scientific ML Benchmark Suite
|
97 |
+
A benchmarking suite for Nexa models across various domains.
|
98 |
""")
|
99 |
|
100 |
with gr.Tabs():
|
|
|
107 |
)
|
108 |
show_tabular_btn = gr.Button("Show Evaluation")
|
109 |
tabular_plot = gr.Plot(label="Benchmark Plot")
|
|
|
110 |
show_tabular_btn.click(
|
111 |
fn=display_tabular_eval,
|
112 |
inputs=tabular_domain,
|
113 |
+
outputs=tabular_plot
|
114 |
)
|
115 |
|
116 |
with gr.TabItem("LLMs"):
|
|
|
122 |
)
|
123 |
show_llm_btn = gr.Button("Show Evaluation")
|
124 |
llm_plot = gr.Plot(label="Benchmark Plot")
|
|
|
125 |
show_llm_btn.click(
|
126 |
fn=display_llm_eval,
|
127 |
inputs=llm_domain,
|
128 |
+
outputs=llm_plot
|
129 |
)
|
130 |
|
131 |
with gr.TabItem("Nexa Mistral Sci-7B"):
|
|
|
137 |
)
|
138 |
show_mistral_btn = gr.Button("Show Evaluation")
|
139 |
mistral_plot = gr.Plot(label="Benchmark Plot")
|
|
|
140 |
show_mistral_btn.click(
|
141 |
fn=display_mistral_eval,
|
142 |
inputs=mistral_metric,
|
143 |
+
outputs=mistral_plot
|
144 |
)
|
145 |
|
146 |
+
with gr.TabItem("About"):
|
147 |
+
gr.Markdown("""
|
148 |
+
# ℹ️ About Nexa Evals
|
149 |
+
Nexa Evals benchmarks Nexa models across scientific domains:
|
150 |
+
- **Tabular Models**: Compares Nexa models against baselines.
|
151 |
+
- **LLMs**: Evaluates Nexa language models against competitors.
|
152 |
+
- **Nexa Mistral Sci-7B**: Compares general and physics-specific performance.
|
153 |
+
Scores are on a 1-10 scale.
|
154 |
+
""")
|
155 |
|
156 |
demo.launch()
|