Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,40 @@
|
|
1 |
import gradio as gr
|
2 |
import plotly.graph_objects as go
|
3 |
-
import
|
4 |
|
5 |
-
#
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
"LLM (General OSIR)": {
|
8 |
"Nexa Mistral Sci-7B": 0.61,
|
9 |
"Llama-3-8B-Instruct": 0.39,
|
@@ -22,9 +53,9 @@ MODEL_EVALS = {
|
|
22 |
},
|
23 |
}
|
24 |
|
25 |
-
#
|
26 |
-
def
|
27 |
-
sorted_items = sorted(
|
28 |
models, scores = zip(*sorted_items)
|
29 |
|
30 |
fig = go.Figure()
|
@@ -32,12 +63,12 @@ def plot_domain(domain):
|
|
32 |
x=scores,
|
33 |
y=models,
|
34 |
orientation='h',
|
35 |
-
marker_color=
|
36 |
))
|
37 |
|
38 |
fig.update_layout(
|
39 |
-
title=f"Model
|
40 |
-
xaxis_title="
|
41 |
yaxis_title="Model",
|
42 |
xaxis_range=[0, 1.0],
|
43 |
template="plotly_white",
|
@@ -46,49 +77,68 @@ def plot_domain(domain):
|
|
46 |
)
|
47 |
return fig
|
48 |
|
49 |
-
#
|
50 |
-
def
|
51 |
-
if
|
52 |
-
return
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
#
|
56 |
with gr.Blocks(css="body {font-family: 'Inter', sans-serif; background-color: #fafafa;}") as demo:
|
57 |
gr.Markdown("""
|
58 |
-
#
|
59 |
-
|
60 |
""")
|
61 |
|
62 |
-
with gr.
|
63 |
-
with gr.
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
with gr.
|
69 |
-
gr.
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
gr.Markdown("""
|
79 |
---
|
80 |
### ℹ️ About
|
81 |
-
|
82 |
-
|
83 |
-
-
|
84 |
-
|
85 |
-
- Hypothesis framing
|
86 |
-
- Domain grounding & math logic
|
87 |
-
- Scientific utility (overall use to researchers)
|
88 |
-
|
89 |
-
This leaderboard includes Nexa's adapters and comparisons to general-purpose LLMs like GPT-4o, Claude 3, and open-source Mistral / LLaMA.
|
90 |
""")
|
91 |
|
92 |
-
leaderboard_plot.render()
|
93 |
-
|
94 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import plotly.graph_objects as go
|
3 |
+
import json
|
4 |
|
5 |
+
# Data for tabular models
|
6 |
+
TABULAR_MODEL_EVALS = {
|
7 |
+
"Proteins": {
|
8 |
+
"Nexa Bio1 (Secondary)": 0.71,
|
9 |
+
"Porter6 (Secondary)": 0.8456,
|
10 |
+
"DeepCNF (Secondary)": 0.85,
|
11 |
+
"AlphaFold2 (Tertiary GDT-TS)": 0.924,
|
12 |
+
"Nexa Bio2 (Tertiary)": 0.90,
|
13 |
+
},
|
14 |
+
"Astro": {
|
15 |
+
"Nexa Astro": 0.97,
|
16 |
+
"Baseline CNN": 0.89,
|
17 |
+
},
|
18 |
+
"Materials": {
|
19 |
+
"Nexa Materials": 0.9999,
|
20 |
+
"Random Forest Baseline": 0.92,
|
21 |
+
},
|
22 |
+
"QST": {
|
23 |
+
"Nexa PIN Model": 0.80,
|
24 |
+
"Quantum TomoNet": 0.85,
|
25 |
+
},
|
26 |
+
"HEP": {
|
27 |
+
"Nexa HEP Model": 0.91,
|
28 |
+
"CMSNet": 0.94,
|
29 |
+
},
|
30 |
+
"CFD": {
|
31 |
+
"Nexa CFD Model": 0.92,
|
32 |
+
"FlowNet": 0.89,
|
33 |
+
},
|
34 |
+
}
|
35 |
+
|
36 |
+
# Data for LLMs
|
37 |
+
LLM_MODEL_EVALS = {
|
38 |
"LLM (General OSIR)": {
|
39 |
"Nexa Mistral Sci-7B": 0.61,
|
40 |
"Llama-3-8B-Instruct": 0.39,
|
|
|
53 |
},
|
54 |
}
|
55 |
|
56 |
+
# Universal plotting function for horizontal bar charts
|
57 |
+
def plot_horizontal_bar(domain, data, color):
|
58 |
+
sorted_items = sorted(data.items(), key=lambda x: x[1], reverse=True)
|
59 |
models, scores = zip(*sorted_items)
|
60 |
|
61 |
fig = go.Figure()
|
|
|
63 |
x=scores,
|
64 |
y=models,
|
65 |
orientation='h',
|
66 |
+
marker_color=color,
|
67 |
))
|
68 |
|
69 |
fig.update_layout(
|
70 |
+
title=f"Model Benchmark Scores — {domain}",
|
71 |
+
xaxis_title="Score",
|
72 |
yaxis_title="Model",
|
73 |
xaxis_range=[0, 1.0],
|
74 |
template="plotly_white",
|
|
|
77 |
)
|
78 |
return fig
|
79 |
|
80 |
+
# Display functions for each section
|
81 |
+
def display_tabular_eval(domain):
|
82 |
+
if domain not in TABULAR_MODEL_EVALS:
|
83 |
+
return None, "Invalid domain selected"
|
84 |
+
plot = plot_horizontal_bar(domain, TABULAR_MODEL_EVALS[domain], 'indigo')
|
85 |
+
details = json.dumps(TABULAR_MODEL_EVALS[domain], indent=2)
|
86 |
+
return plot, details
|
87 |
+
|
88 |
+
def display_llm_eval(domain):
|
89 |
+
if domain not in LLM_MODEL_EVALS:
|
90 |
+
return None, "Invalid domain selected"
|
91 |
+
plot = plot_horizontal_bar(domain, LLM_MODEL_EVALS[domain], 'lightblue')
|
92 |
+
details = json.dumps(LLM_MODEL_EVALS[domain], indent=2)
|
93 |
+
return plot, details
|
94 |
|
95 |
+
# Gradio interface
|
96 |
with gr.Blocks(css="body {font-family: 'Inter', sans-serif; background-color: #fafafa;}") as demo:
|
97 |
gr.Markdown("""
|
98 |
+
# 🔬 Nexa Evals — Scientific ML Benchmark Suite
|
99 |
+
A comprehensive benchmarking suite comparing Nexa models against state-of-the-art models across scientific domains and language models.
|
100 |
""")
|
101 |
|
102 |
+
with gr.Tabs():
|
103 |
+
with gr.TabItem("Tabular Models"):
|
104 |
+
with gr.Row():
|
105 |
+
tabular_domain = gr.Dropdown(
|
106 |
+
choices=list(TABULAR_MODEL_EVALS.keys()),
|
107 |
+
label="Select Domain",
|
108 |
+
value="Proteins"
|
109 |
+
)
|
110 |
+
show_tabular_btn = gr.Button("Show Evaluation")
|
111 |
+
tabular_plot = gr.Plot(label="Benchmark Plot")
|
112 |
+
tabular_details = gr.Code(label="Raw Scores (JSON)", language="json")
|
113 |
+
show_tabular_btn.click(
|
114 |
+
fn=display_tabular_eval,
|
115 |
+
inputs=tabular_domain,
|
116 |
+
outputs=[tabular_plot, tabular_details]
|
117 |
+
)
|
118 |
|
119 |
+
with gr.TabItem("LLMs"):
|
120 |
+
with gr.Row():
|
121 |
+
llm_domain = gr.Dropdown(
|
122 |
+
choices=list(LLM_MODEL_EVALS.keys()),
|
123 |
+
label="Select Domain",
|
124 |
+
value="LLM (General OSIR)"
|
125 |
+
)
|
126 |
+
show_llm_btn = gr.Button("Show Evaluation")
|
127 |
+
llm_plot = gr.Plot(label="Benchmark Plot")
|
128 |
+
llm_details = gr.Code(label="Raw Scores (JSON)", language="json")
|
129 |
+
show_llm_btn.click(
|
130 |
+
fn=display_llm_eval,
|
131 |
+
inputs=llm_domain,
|
132 |
+
outputs=[llm_plot, llm_details]
|
133 |
+
)
|
134 |
|
135 |
gr.Markdown("""
|
136 |
---
|
137 |
### ℹ️ About
|
138 |
+
Nexa Evals provides benchmarks for both tabular models and language models in scientific domains:
|
139 |
+
- **Tabular Models**: Evaluated on domain-specific metrics (e.g., accuracy, GDT-TS) across fields like Proteins, Astro, Materials, QST, HEP, and CFD.
|
140 |
+
- **Language Models**: Assessed using the SciEval benchmark under the OSIR initiative, focusing on scientific utility, information entropy, internal consistency, hypothesis framing, domain grounding, and math logic.
|
141 |
+
Scores range from 0 to 1, with higher values indicating better performance. Models are sorted by score in descending order for easy comparison.
|
|
|
|
|
|
|
|
|
|
|
142 |
""")
|
143 |
|
|
|
|
|
144 |
demo.launch()
|