Spaces:
Paused
Paused
File size: 1,794 Bytes
fed6385 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import gradio as gr
# Narrative
narrative = """
# π Welcome to Nexa Marketplace
Scientific Machine Learning is powerful β but painful. Researchers struggle with scattered datasets, slow infra, and confusing tooling.
**Nexa Marketplace solves this with:**
- Pre-curated ML-ready datasets
- Simple fine-tuned model consulting
- Real tooling for real science
"""
# Dataset offerings
datasets = [
{
"name": "𧬠Protein-Lite",
"desc": "1K protein samples (ML-ready)",
"price": "$5",
"link": "https://buy.stripe.com/test_lite"
},
{
"name": "𧬠Protein-Standard",
"desc": "5K protein samples + README",
"price": "$20",
"link": "https://buy.stripe.com/test_standard"
},
{
"name": "𧬠Protein-Max",
"desc": "10K+ protein samples + entropy rank + docs",
"price": "$100",
"link": "https://buy.stripe.com/test_max"
}
]
# Consulting description
consulting = """
# π‘ LLM + SciML Consulting
I fine-tune scientific LLMs on research corpora (300K+ instructions), optimize datasets for training, and build custom inference pipelines.
### π Example
- **Model:** Mistral 7B
- **Task:** Hypothesis + methodology generation from papers
- **Dataset:** 300K SciML instructions
π© **[Email](mailto:[email protected])** or **[Book Time](https://calendly.com/your-link)** to get started.
"""
# Interface
with gr.Blocks(title="Nexa Marketplace") as demo:
gr.Markdown(narrative)
gr.Markdown("## π¦ Datasets")
for ds in datasets:
with gr.Row():
gr.Markdown(f"**{ds['name']}** \n{ds['desc']} \nπ° {ds['price']}")
gr.Button("Buy", link=ds["link"])
gr.Markdown("## π€ Consulting")
gr.Markdown(consulting)
demo.launch()
|