Spaces:
Running
Running
File size: 39,187 Bytes
ef4c8c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 |
# python
"""
The Main pipeline for building a scientific corpus from multiple sources.
Responsibilities:
- Orchestrates collection, processing, ranking, and deduplication of papers from arXiv, PubMed, and FineWeb-Edu.
- Handles error logging, checkpointing, and metrics for observability.
- Modular design for extensibility and maintainability.
Usage:
python Main_2.py
Classes:
- SourceMetrics: Tracks per-source metrics.
- CorpusConfig: Configuration for corpus building.
- ScientificCorpusBuilder: Main pipeline class.
Functions:
- main: Entry point for running the pipeline.
Environment:
- Requires ENTREZ_EMAIL for PubMed API.
- Outputs logs and intermediate checkpoints to ./scientific_corpus_data.
"""
import concurrent.futures
import json
import logging
import os
import signal
import time
from dataclasses import dataclass
from pathlib import Path
from types import FrameType
from typing import List, Dict, Set, Optional, Callable, Any
from urllib.error import URLError, HTTPError
from xml.parsers.expat import ExpatError
import arxiv
from Bio import Entrez
from datasets import load_dataset
from tqdm import tqdm
from Tokenization.Build_tokenizer import QLoRAPreprocessor
from Tokenization.Entropy_ranker import EntropyRanker
from Tokenization.hf_upload import upload_to_huggingface
from Tokenization.Label_tokens import TASK_TAGS, ROUTING_TAGS
from Tokenization.preprocessing import clean_text, segment_paragraphs
from Tokenization.pretraining.Dataset_stats import DatasetAnalyzer
from Tokenization.app.Config import PLAN_LIMITS
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
handlers=[
logging.FileHandler("corpus_builder.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
is_shutdown = False
"""Global flag indicating whether a shutdown signal has been received.
This flag is set to True by the signal handler to allow for graceful shutdown
of long-running operations throughout the pipeline.
"""
def signal_handler(sig: int, frame: FrameType) -> None:
"""Handle shutdown signals gracefully and set shutdown flag."""
global is_shutdown
logger.info(f"Received signal {sig}, shutting down gracefully. Frame: {frame}")
is_shutdown = True
# Register signal handlers for graceful shutdown
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
def retry(max_retries: int = 3, backoff_factor: float = 1.0,
exceptions: tuple = (Exception,)) -> Callable:
"""
Decorator for retrying a function with exponential backoff.
Args:
max_retries: Maximum number of retries.
backoff_factor: Multiplier for exponential backoff.
exceptions: Exception types to catch and retry.
Returns:
Decorated function with retry logic.
"""
def decorator(func: Callable) -> Callable:
def wrapper(*args, **kwargs) -> Any:
retries = 0
while retries < max_retries:
if is_shutdown:
logger.info("Shutdown in progress, aborting retries.")
raise KeyboardInterrupt("Shutdown requested")
try:
return func(*args, **kwargs)
except exceptions as e:
wait = backoff_factor * (2 ** retries)
logger.warning(f"Error in {func.__name__}: {e}. Retrying in {wait:.1f}s...")
time.sleep(wait)
retries += 1
logger.error(f"Function {func.__name__} failed after {max_retries} attempts.")
raise RuntimeError(f"{func.__name__} failed after {max_retries} attempts")
return wrapper
return decorator
@dataclass
class SourceMetrics:
"""Metrics for tracking source performance."""
papers: int = 0
tokens: int = 0
time: float = 0.0
errors: int = 0
@dataclass
class CorpusConfig:
"""
Configuration for corpus building parameters.
Attributes:
max_arxiv_papers: Maximum number of arXiv papers to fetch.
max_pubmed_papers: Maximum number of PubMed papers to fetch.
max_fineweb_samples: Maximum number of FineWeb-Edu samples to fetch.
max_workers: Number of workers for parallel processing.
timeout: Timeout for API requests.
chunk_size: Chunk size for batch processing.
"""
max_arxiv_papers: int = 9000
max_pubmed_papers: int = 3000
max_fineweb_samples: int = 30000
max_workers: int = 8
timeout: int = 30
chunk_size: int = 1000
class ScientificCorpusBuilder:
"""
Main class for building a scientific corpus from multiple sources.
Methods:
fetch_arxiv_papers: Collects papers from arXiv.
fetch_pubmed_papers: Collects papers from PubMed.
fetch_fineweb_edu: Collects educational content from FineWeb-Edu.
preprocess_sample: Cleans and segments a paper into samples.
process_papers: Tags, filters, and preprocesses papers.
build_corpus: Orchestrates the full pipeline and builds the corpus.
print_report: Prints a summary report of the build process.
"""
def __init__(self, config: Optional[CorpusConfig] = None):
"""
Initialize the corpus builder with configuration and dependencies.
Args:
config: Optional CorpusConfig object.
"""
self.config = config or CorpusConfig()
self.preprocessor = QLoRAPreprocessor(corpus_type="scientific")
self.analyzer = DatasetAnalyzer()
self.ranker = EntropyRanker()
self.data_dir = Path("scientific_corpus_data")
self.data_dir.mkdir(exist_ok=True)
self._setup_apis()
self.seen_titles: Set[str] = set()
self.metrics = {
"arxiv": SourceMetrics(),
"pubmed": SourceMetrics(),
"fineweb_edu": SourceMetrics(),
"total_tokens": 0,
"total_time": 0.0
}
@staticmethod
def _setup_apis() -> None:
"""
Setup API configurations for external data sources.
"""
Entrez.email = os.getenv("ENTREZ_EMAIL", "[email protected]")
if Entrez.email == "[email protected]":
logger.warning("Using default email for Entrez. Set ENTREZ_EMAIL environment variable.")
@retry(max_retries=3, backoff_factor=2,
exceptions=(arxiv.ArxivError, HTTPError, URLError, ConnectionError))
def _fetch_arxiv_search(self, query: str, max_results: int) -> List[Any]:
"""
Fetch arXiv search results with error handling and exponential backoff.
Args:
query: arXiv API query string.
max_results: Maximum number of results to fetch.
Returns:
List of arXiv result objects.
"""
try:
search = arxiv.Search(
query=query,
max_results=max_results,
sort_by=arxiv.SortCriterion.SubmittedDate,
)
client = arxiv.Client()
results = list(client.results(search))
if not results:
logger.warning(f"Empty page returned for query '{query}'")
return results
except (arxiv.UnexpectedEmptyPageError, arxiv.HTTPError) as e:
logger.warning(f"Empty page returned for query '{query}': {e}")
return []
except Exception as e:
logger.error(f"Error in _fetch_arxiv_search for query '{query}': {e}")
raise
def fetch_arxiv_papers(self) -> List[Dict]:
"""
Fetch papers from arXiv across multiple domains with verification and checkpoint saving.
Returns:
List of arXiv paper dictionaries.
"""
logger.info("Starting arXiv paper collection...")
start_time = time.time()
papers = []
queries = [
("physics", "cat:physics* OR cat:astro-ph* OR cat:cond-mat* OR cat:hep-th OR cat:quant-ph OR cat:math-ph"),
("biology", "cat:q-bio*"),
("materials", "cat:cond-mat.mtrl-sci OR cat:materials*")
]
for domain, query in queries:
if is_shutdown:
break
try:
results = self._fetch_arxiv_search(query, self.config.max_arxiv_papers // 3)
for result in tqdm(results, desc=f"arXiv {domain}"):
if is_shutdown:
break
try:
paper = {
"title": result.title.strip() if result.title else "",
"abstract": result.summary.strip() if result.summary else "",
"full_text": "",
"domain": domain,
"section": "abstract",
"source": "arxiv",
"authors": [str(a) for a in result.authors] if result.authors else [],
"published": result.published.isoformat() if result.published else None,
"provenance": {"arxiv_id": result.get_short_id()},
"categories": [c for c in getattr(result, "categories", [])] if hasattr(result, "categories") else [],
"text": result.summary.strip() if result.summary else ""
}
if paper["title"] and paper["title"] not in self.seen_titles:
papers.append(paper)
self.seen_titles.add(paper["title"])
except Exception as e:
logger.warning(f"Error processing arXiv result: {e}")
self.metrics["arxiv"].errors += 1
continue
except Exception as e:
logger.error(f"arXiv {domain} search failed: {e}")
self.metrics["arxiv"].errors += 1
self._save_intermediate(papers, "arxiv_papers.jsonl")
elapsed = time.time() - start_time
self.metrics["arxiv"].papers = len(papers)
self.metrics["arxiv"].time = elapsed
logger.info(f"Collected {len(papers)} arXiv papers in {elapsed:.2f}s")
return papers
@retry(max_retries=3, backoff_factor=2,
exceptions=(HTTPError, URLError, ConnectionError, ExpatError))
def _fetch_pubmed_batch(self, chunk_pmids: List[str]) -> Dict:
"""
Fetch a batch of PubMed records with error handling.
Args:
chunk_pmids: List of PubMed IDs.
Returns:
Dictionary of PubMed records.
"""
try:
fetch_handle = Entrez.efetch (
db="pubmed",
id=",".join (chunk_pmids),
rettype="medline",
retmode="xml"
)
records = Entrez.read (fetch_handle)
fetch_handle.close ()
return records
except ExpatError as e:
logger.error (f"XML parsing error in PubMed batch: {e}")
raise
except (HTTPError, URLError) as e:
logger.error (f"Network error fetching PubMed batch: {e}")
raise
def fetch_pubmed_papers(self) -> List[Dict]:
"""
Fetch papers from PubMed with biology focus.
Returns:
List of PubMed paper dictionaries.
"""
logger.info ("Starting PubMed paper collection...")
start_time = time.time ()
papers = []
search_terms = [
"(methods[Title/Abstract]) AND (biology[MeSH Terms])",
"(computational biology[MeSH Terms]) AND (methods[Title/Abstract])",
"(bioinformatics[MeSH Terms]) AND (algorithm[Title/Abstract])",
"(molecular biology[MeSH Terms]) AND (technique[Title/Abstract])"
]
for search_term in search_terms:
if is_shutdown:
break
try:
handle = Entrez.esearch (
db="pubmed",
term=search_term,
retmax=self.config.max_pubmed_papers // len (search_terms),
sort="relevance"
)
record = Entrez.read (handle)
handle.close ()
pmids = record.get ("IdList", [])
for i in tqdm (range (0, len (pmids), self.config.chunk_size), desc="PubMed batch"):
if is_shutdown:
break
chunk_pmids = pmids [i:i + self.config.chunk_size]
try:
records = self._fetch_pubmed_batch (chunk_pmids)
for rec in records.get ("PubmedArticle", []):
try:
medline_citation = rec.get ("MedlineCitation", {})
article = medline_citation.get ("Article", {})
title = article.get ("ArticleTitle", "")
abstract_list = article.get ("Abstract", {}).get ("AbstractText", [""])
abstract = abstract_list [0] if abstract_list else ""
if title and isinstance (title, str) and title not in self.seen_titles:
paper = {
"title": title.strip (),
"abstract": abstract.strip () if isinstance (abstract, str) else "",
"full_text": "",
"domain": "biology",
"section": "abstract",
"source": "pubmed",
"authors": [],
"published": None,
"provenance": {"pubmed_id": str (medline_citation.get ("PMID", ""))},
"categories": ["biology"],
"text": abstract.strip () if isinstance (abstract, str) else ""
}
papers.append (paper)
self.seen_titles.add (title)
except (KeyError, TypeError, AttributeError) as e:
logger.warning (f"Error processing PubMed record: {e}")
self.metrics ["pubmed"].errors += 1
continue
except (HTTPError, URLError, ConnectionError, ExpatError) as e:
self.metrics ["pubmed"].errors += 1
logger.warning (f"Failed to fetch PubMed batch: {e}")
continue
except (HTTPError, URLError, ConnectionError, ExpatError) as e:
self.metrics ["pubmed"].errors += 1
logger.error (f"PubMed search failed for {search_term}: {e}")
except KeyboardInterrupt:
logger.info ("PubMed collection interrupted by user")
break
self._save_intermediate (papers, "pubmed_papers.jsonl")
elapsed = time.time () - start_time
self.metrics ["pubmed"].papers = len (papers)
self.metrics ["pubmed"].time = elapsed
logger.info (f"Collected {len (papers)} PubMed papers in {elapsed:.2f}s")
return papers
@retry (max_retries=3, backoff_factor=2,
exceptions=(ConnectionError, HTTPError, URLError, OSError))
def fetch_fineweb_edu(self) -> List [Dict]:
"""
Fetch educational content from FineWeb-Edu dataset.
Returns:
List of FineWeb-Edu paper dictionaries.
"""
logger.info ("Starting FineWeb-Edu collection...")
start_time = time.time ()
papers = []
try:
ds = load_dataset ("HuggingFaceFW/fineweb-edu", "sample-10BT",
split="train", streaming=True)
samples = []
for i, sample in enumerate (ds):
if is_shutdown:
break
if i >= self.config.max_fineweb_samples:
break
if not isinstance (sample, dict) or "text" not in sample:
logger.warning (f"Invalid sample structure at index {i}")
continue
samples.append (sample)
if (i + 1) % 10000 == 0:
logger.info (f"Collected {i + 1} FineWeb samples")
logger.info (f"Processing {len (samples)} FineWeb samples")
def is_educational_content(sample: Dict) -> bool:
"""Check if content is educational and suitable."""
try:
text = sample.get ("text", "")
if not isinstance (text, str) or len (text) < 500:
return False
return self.ranker.is_explanatory (text)
except (AttributeError, TypeError, ValueError) as e:
logger.debug (f"Error evaluating educational content: {e}")
return False
with concurrent.futures.ThreadPoolExecutor (max_workers=self.config.max_workers) as executor:
filtered_results = list (tqdm (
executor.map (is_educational_content, samples),
total=len (samples),
desc="Filtering FineWeb content"
))
for sample, is_good in zip (samples, filtered_results):
if is_shutdown:
break
if is_good:
try:
url = sample.get ("url", "")
meta = sample.get ("meta", {})
title = meta.get ("title", "") if isinstance (meta, dict) else ""
title = title or url or f"Document_{len (papers)}"
if title not in self.seen_titles:
paper = {
"title": title,
"abstract": "",
"full_text": sample.get ("text", ""),
"domain": "education",
"section": "full_text",
"source": "fineweb_edu",
"authors": [],
"published": None,
"provenance": {"url": url},
"categories": ["education"],
"text": sample.get("text", "")
}
papers.append (paper)
self.seen_titles.add (title)
except (KeyError, TypeError, AttributeError) as e:
logger.warning (f"Error processing FineWeb sample: {e}")
self.metrics ["fineweb_edu"].errors += 1
continue
except (ConnectionError, HTTPError, URLError, OSError) as e:
logger.error (f"FineWeb-Edu fetch failed: {e}")
self.metrics ["fineweb_edu"].errors += 1
except KeyboardInterrupt:
logger.info ("FineWeb-Edu collection interrupted by user")
except ImportError as e:
logger.error (f"Failed to import required dataset library: {e}")
self.metrics ["fineweb_edu"].errors += 1
self._save_intermediate (papers, "fineweb_edu.jsonl")
elapsed = time.time () - start_time
self.metrics ["fineweb_edu"].papers = len (papers)
self.metrics ["fineweb_edu"].time = elapsed
logger.info (f"Collected {len (papers)} FineWeb-Edu papers in {elapsed:.2f}s")
return papers
@staticmethod
def preprocess_sample(paper: Dict) -> List [Dict]:
"""
Preprocess a paper sample into multiple training samples.
Args:
paper: Dictionary representing a paper.
Returns:
List of processed sample dictionaries.
"""
try:
title = clean_text (paper.get ("title", "")) if paper.get ("title") else ""
abstract = clean_text (paper.get ("abstract", "")) if paper.get ("abstract") else ""
full_text = clean_text (paper.get ("full_text", "")) if paper.get ("full_text") else ""
paragraphs = segment_paragraphs (full_text) if full_text else []
samples = []
if title or abstract:
sample = dict (paper)
sample ["title"] = title
sample ["abstract"] = abstract
sample ["full_text"] = ""
sample ["section"] = "abstract"
samples.append (sample)
for para in paragraphs:
if para.strip ():
sample = dict (paper)
sample ["title"] = title
sample ["abstract"] = ""
sample ["full_text"] = para
sample ["section"] = "paragraph"
samples.append (sample)
return samples
except (AttributeError, TypeError, ValueError) as e:
logger.warning (f"Error preprocessing sample: {e}")
return []
def process_papers(self, papers: List[Dict], domain: str) -> List[Dict]:
"""
Process papers with domain-specific tagging and filtering.
Args:
papers: List of paper dictionaries.
domain: Domain string for tagging.
Returns:
List of processed and filtered sample dictionaries.
"""
logger.info(f"Processing {len(papers)} {domain} papers...")
processed = []
unknown_domains = 0
unknown_sections = 0
def label_domain(paper):
cats = paper.get('categories', [])
if not cats:
return 'unknown'
cats_str = " ".join(cats).lower()
if 'bio' in cats_str:
return '[BIO]'
if 'gen' in cats_str:
return '[GEN]'
if 'phys' in cats_str:
return '[PHY]'
if 'math' in cats_str:
return '[MATH]'
if 'mat' in cats_str or 'materials' in cats_str:
return '[MAT]'
if 'astro' in cats_str:
return '[ASTRO]'
if 'cs' in cats_str:
return '[CS]'
return 'unknown'
def label_section(paper):
text = paper.get('text', '') or paper.get('abstract', '') or ''
text_lower = text.lower()
if not text_lower:
return 'unknown'
if 'abstract' in text_lower:
return '[ABSTRACT]'
if 'introduction' in text_lower:
return '[INTRO]'
if 'methods' in text_lower:
return '[METHODS]'
if 'results' in text_lower:
return '[RESULTS]'
if 'discussion' in text_lower:
return '[DISCUSSION]'
if 'conclusion' in text_lower:
return '[CONCLUSION]'
return 'unknown'
for paper in tqdm(papers, desc=f"Processing {domain} papers"):
try:
domain_tag = label_domain(paper)
section_tag = label_section(paper)
paper["domain_tag"] = domain_tag
paper["section_tag"] = section_tag
if domain_tag == 'unknown':
unknown_domains += 1
if section_tag == 'unknown':
unknown_sections += 1
task = paper.get("task", None)
if task and task in TASK_TAGS:
paper["task_tag"] = TASK_TAGS[task]
routing = paper.get("routing", "general")
paper["routing_tag"] = ROUTING_TAGS.get(routing, ROUTING_TAGS["general"])
samples = self.preprocess_sample(paper)
for sample in samples:
try:
content_parts = []
if sample.get("title"):
content_parts.append(str(sample["title"]))
if sample.get("abstract"):
content_parts.append(str(sample["abstract"]))
if sample.get("full_text"):
content_parts.append(str(sample["full_text"])[:1000])
content = " ".join(content_parts)
if content.strip() and self.ranker.is_explanatory(content):
sample["domain_tag"] = paper["domain_tag"]
sample["section_tag"] = paper["section_tag"]
sample["routing_tag"] = paper["routing_tag"]
if "task_tag" in paper:
sample["task_tag"] = paper["task_tag"]
processed.append(sample)
except Exception as e:
logger.debug(f"Error evaluating sample content: {e}")
continue
except Exception as e:
logger.warning(f"Paper processing error: {e}")
continue
logger.info(f"Processed {len(processed)}/{len(papers)} {domain} papers")
logger.info(f"Unknown domains: {unknown_domains}, Unknown sections: {unknown_sections}")
return processed
def _save_intermediate(self, papers: List[Dict], filename: str) -> None:
"""
Save intermediate results to disk as JSONL.
Args:
papers: List of paper/sample dictionaries.
filename: Output filename.
"""
path = self.data_dir / filename
try:
with open (path, "w", encoding="utf-8") as f:
for paper in papers:
f.write (json.dumps (paper, ensure_ascii=False) + "\n")
logger.info (f"Saved checkpoint to {path}")
except (OSError, IOError, PermissionError) as e:
logger.error (f"Failed to save intermediate file {filename}: {e}")
except (TypeError, ValueError) as e:
logger.error (f"JSON serialization error for {filename}: {e}")
def build_corpus(self, output_path: str, verify_only: bool = False) -> None:
"""
Build the complete scientific corpus with checkpoint verification.
Args:
output_path: Path to save the final corpus.
verify_only: If True, only verify checkpoints and skip merging.
"""
logger.info("Starting scientific corpus build...")
total_start = time.time()
all_papers = []
sources = [
("arXiv", self.fetch_arxiv_papers, None),
("PubMed", self.fetch_pubmed_papers, "biology"),
("FineWeb-Edu", self.fetch_fineweb_edu, "education")
]
for source_name, fetch_func, domain in sources:
if is_shutdown:
break
logger.info(f"Fetching {source_name} papers...")
try:
papers = fetch_func()
if domain:
processed = []
for i in range(0, len(papers), self.config.chunk_size):
chunk = papers[i:i + self.config.chunk_size]
processed.extend(self.process_papers(chunk, domain))
papers = processed
chkpt_filename = f"{source_name.lower()}_papers.jsonl"
self._save_intermediate(papers, chkpt_filename)
if not papers:
logger.error(f"{source_name} checkpoint {chkpt_filename} is empty!")
all_papers.extend(papers)
logger.info(f"Added {len(papers)} papers from {source_name}")
except Exception as e:
logger.error(f"Critical error fetching from {source_name}: {e}")
continue
logger.info(f"Total papers collected: {len(all_papers)}")
if verify_only:
logger.info("Verification flag enabled; skipping merge and build.")
self.print_report({})
return
if not all_papers:
logger.error("No papers collected. Cannot build corpus.")
self.print_report({})
return
logger.info("Ranking and deduplicating papers...")
try:
ranked_papers = self.ranker.rank_samples(all_papers)
if not ranked_papers:
logger.error("Final corpus is empty after ranking. Using unranked papers as fallback.")
ranked_papers = all_papers
logger.info(f"Final corpus size: {len(ranked_papers)} papers")
except Exception as e:
logger.error(f"Error ranking papers: {e}")
ranked_papers = all_papers
if not ranked_papers:
logger.error("Final corpus is empty. No data to process or save.")
self.print_report({})
return
self._save_intermediate(ranked_papers, "ranked_papers.jsonl")
try:
stats = self.analyzer.get_dataset_stats(ranked_papers)
self.metrics["total_tokens"] = int(stats.get("avg_tokens", 0) * stats.get("total_samples", 0))
except Exception as e:
logger.error(f"Error generating dataset statistics: {e}")
stats = {}
self.metrics["total_time"] = time.time() - total_start
logger.info("Processing final dataset in batches...")
try:
with open(output_path, "w", encoding="utf-8") as out_f:
for i in range(0, len(ranked_papers), self.config.chunk_size):
chunk = ranked_papers[i:i + self.config.chunk_size]
for paper in chunk:
out_f.write(json.dumps(paper, ensure_ascii=False) + "\n")
except Exception as e:
logger.error(f"Error processing final dataset: {e}")
# HuggingFace upload: warn if a file is too large
if os.path.exists(output_path) and os.path.getsize(output_path) > 10 * 1024 * 1024:
logger.warning(
f"{output_path} is larger than 10 MiB. HuggingFace will reject files >10 MiB unless you use Git LFS. "
"See https://hf.co/docs/hub/repositories-getting-started#terminal"
)
logger.warning(
"To fix: install git-lfs and run 'git lfs track \"*.jsonl\"' before pushing, or split your file."
)
self.print_report(stats)
logger.info(f"Scientific corpus successfully built: {output_path}")
def build_corpus_scoped(self, plan: str, token_budget: int) -> (list, dict):
"""
Build a scientific corpus, limiting the total number of tokens to the plan's budget.
Returns the corpus and stats.
"""
logger.info(f"Building corpus for plan '{plan}' with token budget {token_budget}")
all_papers = []
all_papers.extend(self.process_papers(self.fetch_arxiv_papers(), "arxiv"))
all_papers.extend(self.process_papers(self.fetch_pubmed_papers(), "biology"))
all_papers.extend(self.process_papers(self.fetch_fineweb_edu(), "education"))
# Rank and deduplicate
ranked_papers = self.ranker.rank_samples(all_papers)
corpus = []
total_tokens = 0
for paper in ranked_papers:
tokens = paper.get("text", "").split()
if total_tokens + len(tokens) > token_budget:
break
corpus.append(paper)
total_tokens += len(tokens)
stats = self.analyzer.get_dataset_stats(corpus)
stats["total_tokens"] = total_tokens
logger.info(f"Corpus built: {len(corpus)} samples, {total_tokens} tokens")
return corpus, stats
def print_report(self, stats: Dict) -> None:
"""
Print a comprehensive build report.
Args:
stats: Dictionary of dataset statistics.
"""
print("\n" + "=" * 67)
print(" SCIENTIFIC CORPUS BUILD REPORT")
print("=" * 67)
print("\nSOURCE METRICS:")
print("-" * 40)
for source_name, label in zip(["arxiv", "pubmed", "fineweb_edu"],
["ARXIV", "PUBMED", "FINEWEB_EDU"]):
metrics = self.metrics[source_name]
print(f"{label:15}: {metrics.papers:6d} papers | {metrics.errors:3d} errors | {metrics.time:9.2f}s")
print("\nOVERALL METRICS:")
print("-" * 40)
total_papers = sum(self.metrics[src].papers for src in ["arxiv", "pubmed", "fineweb_edu"])
total_errors = sum(self.metrics[src].errors for src in ["arxiv", "pubmed", "fineweb_edu"])
print(f"Total Papers: {total_papers:,}")
print(f"Total Tokens: {self.metrics['total_tokens']:,}")
print(f"Total Time: {self.metrics['total_time']:.2f}s")
print(f"Total Errors: {total_errors}")
success_rate = (1 - total_errors / max(total_papers + total_errors, 1)) * 100
print(f"Success Rate: {success_rate:.2f}%")
if stats:
print("\nDATASET STATISTICS:")
print("-" * 40)
for key, value in stats.items():
print(f"{key:20}: {value}")
print("=" * 67)
print()
def main() -> None:
"""
Main entry point for the corpus builder.
"""
try:
config = CorpusConfig()
builder = ScientificCorpusBuilder(config)
output_path = "scientific_corpus_325M.jsonl"
builder.build_corpus(output_path)
# --- Hugging Face upload with improved error handling ---
try:
# Split large files if needed
file_size = os.path.getsize(output_path)
if file_size > 10 * 1024 * 1024: # 10 MB
logger.info("Large file detected, splitting into chunks...")
chunk_size = 10 * 1024 * 1024 # 10 MB chunks
base_path = os.path.splitext(output_path)[0]
with open(output_path, 'r', encoding='utf-8') as f:
chunk_num = 0
chunk = []
current_size = 0
for line in f:
line_size = len(line.encode('utf-8'))
if current_size + line_size > chunk_size and chunk:
chunk_path = f"{base_path}_part{chunk_num}.jsonl"
with open(chunk_path, 'w', encoding='utf-8') as chunk_file:
chunk_file.writelines(chunk)
logger.info(f"Created chunk {chunk_num}: {chunk_path}")
chunk = []
current_size = 0
chunk_num += 1
chunk.append(line)
current_size += line_size
# Write final chunk
if chunk:
chunk_path = f"{base_path}_part{chunk_num}.jsonl"
with open(chunk_path, 'w', encoding='utf-8') as chunk_file:
chunk_file.writelines(chunk)
logger.info(f"Created final chunk {chunk_num}: {chunk_path}")
# Upload each chunk
for i in range(chunk_num + 1):
chunk_path = f"{base_path}_part{i}.jsonl"
logger.info(f"Uploading chunk {i}...")
upload_to_huggingface(
dataset_path=chunk_path,
repo_id="Allanatrix/Scientific_Research_Tokenized",
auto_generate_readme=(i == 0), # Only generate README for first chunk
compress=True,
keep_local=True # Keep files until all uploads complete
)
else:
# Upload single file
upload_to_huggingface(
dataset_path=output_path,
repo_id="Allanatrix/Scientific_Research_Tokenized",
auto_generate_readme=True,
compress=True
)
except ImportError:
logger.error("Hugging Face upload module not found. Please ensure hf_upload.py exists.")
except Exception as e:
logger.error(f"Error during Hugging Face upload: {e}")
if "EOF" in str(e) or "timeout" in str(e):
logger.warning("Upload interrupted. Try using smaller chunks or increasing timeout.")
finally:
# Cleanup temporary files
if 'chunk_num' in locals():
for i in range(chunk_num + 1):
try:
os.remove(f"{base_path}_part{i}.jsonl")
except OSError:
pass
except KeyboardInterrupt:
logger.info("Build process interrupted by user")
except Exception as e:
logger.error(f"Unexpected error in main: {e}")
raise
# Optionally, you can add a CLI entry point for testing:
def main_scoped(plan: str = "free"):
config = CorpusConfig()
builder = ScientificCorpusBuilder(config)
token_budget = PLAN_LIMITS.get(plan, 1000)
corpus, stats = builder.build_corpus_scoped(plan, token_budget)
output_path = f"scientific_corpus_{plan}_{token_budget}.jsonl"
with open(output_path, "w", encoding="utf-8") as f:
for paper in corpus:
f.write(json.dumps(paper, ensure_ascii=False) + "\n")
print(f"Saved {len(corpus)} samples ({stats['total_tokens']} tokens) to {output_path}")
if __name__ == "__main__":
# main() # old entry point
main_scoped("free") # new entry point for plan-scoped corpus
|