Spaces:
Running
on
Zero
Running
on
Zero
Upload imgproc.py
Browse files- imgproc.py +80 -0
imgproc.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def center_crop_arr(pil_image, image_size):
|
| 8 |
+
"""
|
| 9 |
+
Center cropping implementation from ADM.
|
| 10 |
+
https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126
|
| 11 |
+
"""
|
| 12 |
+
while min(*pil_image.size) >= 2 * image_size:
|
| 13 |
+
pil_image = pil_image.resize(tuple(x // 2 for x in pil_image.size), resample=Image.BOX)
|
| 14 |
+
|
| 15 |
+
scale = image_size / min(*pil_image.size)
|
| 16 |
+
pil_image = pil_image.resize(tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC)
|
| 17 |
+
|
| 18 |
+
arr = np.array(pil_image)
|
| 19 |
+
crop_y = (arr.shape[0] - image_size) // 2
|
| 20 |
+
crop_x = (arr.shape[1] - image_size) // 2
|
| 21 |
+
return Image.fromarray(arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size])
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def center_crop(pil_image, crop_size):
|
| 25 |
+
while pil_image.size[0] >= 2 * crop_size[0] and pil_image.size[1] >= 2 * crop_size[1]:
|
| 26 |
+
pil_image = pil_image.resize(tuple(x // 2 for x in pil_image.size), resample=Image.BOX)
|
| 27 |
+
|
| 28 |
+
scale = max(crop_size[0] / pil_image.size[0], crop_size[1] / pil_image.size[1])
|
| 29 |
+
pil_image = pil_image.resize(tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC)
|
| 30 |
+
|
| 31 |
+
# crop_left = random.randint(0, pil_image.size[0] - crop_size[0])
|
| 32 |
+
# crop_upper = random.randint(0, pil_image.size[1] - crop_size[1])
|
| 33 |
+
crop_left = (pil_image.size[0] - crop_size[0]) // 2
|
| 34 |
+
crop_upper = (pil_image.size[1] - crop_size[1]) // 2
|
| 35 |
+
crop_right = crop_left + crop_size[0]
|
| 36 |
+
crop_lower = crop_upper + crop_size[1]
|
| 37 |
+
return pil_image.crop(box=(crop_left, crop_upper, crop_right, crop_lower))
|
| 38 |
+
|
| 39 |
+
def var_center_crop(pil_image, crop_size_list, random_top_k=4):
|
| 40 |
+
w, h = pil_image.size
|
| 41 |
+
rem_percent = [min(cw / w, ch / h) / max(cw / w, ch / h) for cw, ch in crop_size_list]
|
| 42 |
+
crop_size = random.choice(
|
| 43 |
+
sorted(((x, y) for x, y in zip(rem_percent, crop_size_list)), reverse=True)[:random_top_k]
|
| 44 |
+
)[1]
|
| 45 |
+
return center_crop(pil_image, crop_size)
|
| 46 |
+
|
| 47 |
+
def var_center_crop_128(pil_image, crop_size_list, random_top_k=4):
|
| 48 |
+
w, h = pil_image.size
|
| 49 |
+
rem_percent = [min(cw / w, ch / h) / max(cw / w, ch / h) for cw, ch in crop_size_list]
|
| 50 |
+
crop_size = random.choice(
|
| 51 |
+
sorted(((x, y) for x, y in zip(rem_percent, crop_size_list)), reverse=True)[:random_top_k]
|
| 52 |
+
)[1]
|
| 53 |
+
breakpoint()
|
| 54 |
+
return center_crop(pil_image, (((w//128)*128), ((h//128)*128)))
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def generate_crop_size_list(num_patches, patch_size, max_ratio=4.0):
|
| 58 |
+
assert max_ratio >= 1.0
|
| 59 |
+
crop_size_list = []
|
| 60 |
+
wp, hp = num_patches, 1
|
| 61 |
+
while wp > 0:
|
| 62 |
+
if max(wp, hp) / min(wp, hp) <= max_ratio:
|
| 63 |
+
if ((wp * patch_size)//32) % 2 == 0 and ((hp * patch_size)//32) % 2 == 0:
|
| 64 |
+
crop_size_list.append((wp * patch_size, hp * patch_size))
|
| 65 |
+
if (hp + 1) * wp <= num_patches:
|
| 66 |
+
hp += 1
|
| 67 |
+
else:
|
| 68 |
+
wp -= 1
|
| 69 |
+
return crop_size_list
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def to_rgb_if_rgba(img: Image.Image):
|
| 73 |
+
if img.mode.upper() == "RGBA":
|
| 74 |
+
rgb_img = Image.new("RGB", img.size, (255, 255, 255))
|
| 75 |
+
rgb_img.paste(img, mask=img.split()[3]) # 3 is the alpha channel
|
| 76 |
+
return rgb_img
|
| 77 |
+
elif img.mode.upper() == "P":
|
| 78 |
+
return img.convert('RGB')
|
| 79 |
+
else:
|
| 80 |
+
return img
|