MATRIX / app.py
laserbeam2045
fix
a751c84
raw
history blame
1.95 kB
import os
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
model_name = "google/gemma-2-2b-it"
try:
logger.info(f"Loading model: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name, token=os.getenv("HF_TOKEN"))
use_gpu = torch.cuda.is_available()
logger.info(f"GPU available: {use_gpu}")
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True
) if use_gpu else None
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
token=os.getenv("HF_TOKEN"),
low_cpu_mem_usage=True,
quantization_config=quantization_config
)
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Model load error: {e}")
raise
def generate_text(text, max_length=50):
try:
logger.info(f"Generating text for input: {text}")
inputs = tokenizer(text, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
outputs = model.generate(**inputs, max_length=max_length)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
logger.info(f"Generated text: {result}")
return result
except Exception as e:
logger.error(f"Generation error: {e}")
return f"Error: {str(e)}"
iface = gr.Interface(
fn=generate_text,
inputs=[gr.Textbox(label="Input Text"), gr.Slider(10, 100, value=50, label="Max Length")],
outputs=gr.Textbox(label="Generated Text"),
title="Gemma 2 API"
)
if __name__ == "__main__":
logger.info("Launching Gradio interface")
iface.launch(server_name="0.0.0.0", server_port=8080)