MATRIX / app.py
laserbeam2045
fix
d1fd8de
raw
history blame
1.85 kB
import os
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI()
model_name = "google/gemma-2-2b-it"
tokenizer = None
model = None
try:
logger.info(f"Loading model: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name, token=os.getenv("HF_TOKEN"))
use_gpu = torch.cuda.is_available()
logger.info(f"GPU available: {use_gpu}")
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16, # メモリ削減
device_map="cpu", # GPU利用不可
token=os.getenv("HF_TOKEN"),
low_cpu_mem_usage=True
)
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Model load error: {e}")
raise
def generate_text(text, max_length=50):
try:
logger.info(f"Generating text for input: {text}")
inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True).to("cpu")
outputs = model.generate(**inputs, max_length=max_length)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
logger.info(f"Generated text: {result}")
return result
except Exception as e:
logger.error(f"Generation error: {e}")
return f"Error: {str(e)}"
iface = gr.Interface(
fn=generate_text,
inputs=[gr.Textbox(label="Input Text"), gr.Slider(10, 100, value=50, label="Max Length")],
outputs=gr.Textbox(label="Generated Text"),
title="Gemma 2 API"
)
if __name__ == "__main__":
try:
logger.info("Launching Gradio interface")
iface.launch(server_name="0.0.0.0", server_port=8080)
except Exception as e:
logger.error(f"Gradio launch error: {e}")
raise