Spaces:
Running
Running
laserbeam2045
commited on
Commit
·
115a37b
1
Parent(s):
d1fd8de
fix
Browse files
app.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
import os
|
2 |
import torch
|
3 |
-
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
5 |
import logging
|
6 |
|
7 |
logging.basicConfig(level=logging.INFO)
|
@@ -16,8 +17,6 @@ model = None
|
|
16 |
try:
|
17 |
logger.info(f"Loading model: {model_name}")
|
18 |
tokenizer = AutoTokenizer.from_pretrained(model_name, token=os.getenv("HF_TOKEN"))
|
19 |
-
use_gpu = torch.cuda.is_available()
|
20 |
-
logger.info(f"GPU available: {use_gpu}")
|
21 |
model = AutoModelForCausalLM.from_pretrained(
|
22 |
model_name,
|
23 |
torch_dtype=torch.float16, # メモリ削減
|
@@ -30,29 +29,19 @@ except Exception as e:
|
|
30 |
logger.error(f"Model load error: {e}")
|
31 |
raise
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
34 |
try:
|
35 |
-
logger.info(f"Generating text for input: {text}")
|
36 |
-
inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True).to("cpu")
|
37 |
-
outputs = model.generate(**inputs, max_length=max_length)
|
38 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
39 |
logger.info(f"Generated text: {result}")
|
40 |
-
return result
|
41 |
except Exception as e:
|
42 |
logger.error(f"Generation error: {e}")
|
43 |
-
return
|
44 |
-
|
45 |
-
iface = gr.Interface(
|
46 |
-
fn=generate_text,
|
47 |
-
inputs=[gr.Textbox(label="Input Text"), gr.Slider(10, 100, value=50, label="Max Length")],
|
48 |
-
outputs=gr.Textbox(label="Generated Text"),
|
49 |
-
title="Gemma 2 API"
|
50 |
-
)
|
51 |
-
|
52 |
-
if __name__ == "__main__":
|
53 |
-
try:
|
54 |
-
logger.info("Launching Gradio interface")
|
55 |
-
iface.launch(server_name="0.0.0.0", server_port=8080)
|
56 |
-
except Exception as e:
|
57 |
-
logger.error(f"Gradio launch error: {e}")
|
58 |
-
raise
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
+
from fastapi import FastAPI
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
from pydantic import BaseModel
|
6 |
import logging
|
7 |
|
8 |
logging.basicConfig(level=logging.INFO)
|
|
|
17 |
try:
|
18 |
logger.info(f"Loading model: {model_name}")
|
19 |
tokenizer = AutoTokenizer.from_pretrained(model_name, token=os.getenv("HF_TOKEN"))
|
|
|
|
|
20 |
model = AutoModelForCausalLM.from_pretrained(
|
21 |
model_name,
|
22 |
torch_dtype=torch.float16, # メモリ削減
|
|
|
29 |
logger.error(f"Model load error: {e}")
|
30 |
raise
|
31 |
|
32 |
+
class TextInput(BaseModel):
|
33 |
+
text: str
|
34 |
+
max_length: int = 50
|
35 |
+
|
36 |
+
@app.post("/generate")
|
37 |
+
async def generate_text(input: TextInput):
|
38 |
try:
|
39 |
+
logger.info(f"Generating text for input: {input.text}")
|
40 |
+
inputs = tokenizer(input.text, return_tensors="pt", max_length=512, truncation=True).to("cpu")
|
41 |
+
outputs = model.generate(**inputs, max_length=input.max_length)
|
42 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
43 |
logger.info(f"Generated text: {result}")
|
44 |
+
return {"generated_text": result}
|
45 |
except Exception as e:
|
46 |
logger.error(f"Generation error: {e}")
|
47 |
+
return {"error": str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|