import os import torch from fastapi import FastAPI from transformers import AutoProcessor, AutoModelForCausalLM from pydantic import BaseModel import logging # ログ設定 logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) app = FastAPI() # モデルロード model_name = "google/gemma-3-4b-it" # 軽量な2Bモデルに変更 try: logger.info(f"Loading model: {model_name}") processor = AutoProcessor.from_pretrained(model_name, token=os.getenv("HF_TOKEN")) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto", token=os.getenv("HF_TOKEN"), low_cpu_mem_usage=True, load_in_4bit=True # 量子化でメモリ節約 ) logger.info("Model loaded successfully") except Exception as e: logger.error(f"Model load error: {e}") raise class TextInput(BaseModel): text: str max_length: int = 50 @app.post("/generate") async def generate_text(input: TextInput): try: logger.info(f"Generating text for input: {input.text}") inputs = processor(input.text, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu") outputs = model.generate(**inputs, max_length=input.max_length) result = processor.decode(outputs[0], skip_special_tokens=True) logger.info(f"Generated text: {result}") return {"generated_text": result} except Exception as e: logger.error(f"Generation error: {e}") return {"error": str(e)}