import os import torch from fastapi import FastAPI from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig from pydantic import BaseModel import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) app = FastAPI() model_name = "google/gemma-2-2b-it" try: logger.info(f"Loading model: {model_name}") tokenizer = AutoTokenizer.from_pretrained(model_name, token=os.getenv("HF_TOKEN")) use_gpu = torch.cuda.is_available() logger.info(f"GPU available: {use_gpu}") quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True ) if use_gpu else None model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto", token=os.getenv("HF_TOKEN"), low_cpu_mem_usage=True, quantization_config=quantization_config ) logger.info("Model loaded successfully") except Exception as e: logger.error(f"Model load error: {e}") raise class TextInput(BaseModel): text: str max_length: int = 50 @app.post("/generate") async def generate_text(input: TextInput): try: logger.info(f"Generating text for input: {input.text}") inputs = tokenizer(input.text, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu") outputs = model.generate(**inputs, max_length=input.max_length) result = tokenizer.decode(outputs[0], skip_special_tokens=True) logger.info(f"Generated text: {result}") return {"generated_text": result} except Exception as e: logger.error(f"Generation error: {e}") return {"error": str(e)}