File size: 8,128 Bytes
3e165b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import torch
import torch.nn.functional as F
from espnet.nets.pytorch_backend.conformer.encoder import Encoder
from torch import nn

from visualizr import logger
from visualizr.model.base import BaseModule


class LSTM(nn.Module):
    def __init__(self, motion_dim, output_dim, num_layers=2, hidden_dim=128):
        super().__init__()
        self.lstm = nn.LSTM(
            input_size=motion_dim,
            hidden_size=hidden_dim,
            num_layers=num_layers,
            batch_first=True,
        )
        self.fc = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        x, _ = self.lstm(x)
        return self.fc(x)


class DiffusionPredictor(BaseModule):
    def __init__(self, conf):
        super(DiffusionPredictor, self).__init__()

        self.infer_type = conf.infer_type

        self.initialize_layers(conf)
        logger.info(f"infer_type: {self.infer_type}")

    def create_conformer_encoder(self, attention_dim, num_blocks):
        return Encoder(
            idim=0,
            attention_dim=attention_dim,
            attention_heads=2,
            linear_units=attention_dim,
            num_blocks=num_blocks,
            input_layer=None,
            dropout_rate=0.2,
            positional_dropout_rate=0.2,
            attention_dropout_rate=0.2,
            normalize_before=False,
            concat_after=False,
            positionwise_layer_type="linear",
            positionwise_conv_kernel_size=3,
            macaron_style=True,
            pos_enc_layer_type="rel_pos",
            selfattention_layer_type="rel_selfattn",
            use_cnn_module=True,
            cnn_module_kernel=13,
        )

    def initialize_layers(
        self,
        conf,
        mfcc_dim=39,
        hubert_dim=1024,
        speech_layers=4,
        speech_dim=512,
        decoder_dim=1024,
        motion_start_dim=512,
        HAL_layers=25,
    ):
        self.conf = conf
        # Speech downsampling
        if self.infer_type.startswith("mfcc"):
            # from 100 hz to 25 hz
            self.down_sample1 = nn.Conv1d(
                mfcc_dim, 256, kernel_size=3, stride=2, padding=1
            )
            self.down_sample2 = nn.Conv1d(
                256, speech_dim, kernel_size=3, stride=2, padding=1
            )
        elif self.infer_type.startswith("hubert"):
            # from 50 hz to 25 hz
            self.down_sample1 = nn.Conv1d(
                hubert_dim, speech_dim, kernel_size=3, stride=2, padding=1
            )

            self.weights = nn.Parameter(torch.zeros(HAL_layers))
            self.speech_encoder = self.create_conformer_encoder(
                speech_dim, speech_layers
            )
        else:
            logger.exception("infer_type not supported")

        # Encoders & Decoders
        self.coarse_decoder = self.create_conformer_encoder(
            decoder_dim, conf.decoder_layers
        )

        # LSTM predictors for Variance Adapter
        if self.infer_type != "hubert_audio_only":
            self.pose_predictor = LSTM(speech_dim, 3)
            self.pose_encoder = LSTM(3, speech_dim)

        if "full_control" in self.infer_type:
            self.location_predictor = LSTM(speech_dim, 1)
            self.location_encoder = LSTM(1, speech_dim)
            self.face_scale_predictor = LSTM(speech_dim, 1)
            self.face_scale_encoder = LSTM(1, speech_dim)

        # Linear transformations
        self.init_code_proj = nn.Sequential(nn.Linear(motion_start_dim, 128))
        self.noisy_encoder = nn.Sequential(nn.Linear(conf.motion_dim, 128))
        self.t_encoder = nn.Sequential(nn.Linear(1, 128))
        self.encoder_direction_code = nn.Linear(conf.motion_dim, 128)

        self.out_proj = nn.Linear(decoder_dim, conf.motion_dim)

    def forward(
        self,
        initial_code,
        direction_code,
        seq_input_vector,
        face_location,
        face_scale,
        yaw_pitch_roll,
        noisy_x,
        t_emb,
        control_flag=False,
    ):
        global x
        if self.infer_type.startswith("mfcc"):
            x = self.mfcc_speech_downsample(seq_input_vector)
        elif self.infer_type.startswith("hubert"):
            norm_weights = F.softmax(self.weights, dim=-1)
            weighted_feature = (
                norm_weights.unsqueeze(0).unsqueeze(-1).unsqueeze(-1) * seq_input_vector
            ).sum(dim=1)
            x = self.down_sample1(weighted_feature.transpose(1, 2)).transpose(1, 2)
            x, _ = self.speech_encoder(x, masks=None)
        predicted_location, predicted_scale, predicted_pose = (
            face_location,
            face_scale,
            yaw_pitch_roll,
        )
        if self.infer_type != "hubert_audio_only":
            logger.info(f"pose controllable. control_flag: {control_flag}")
            x, predicted_location, predicted_scale, predicted_pose = (
                self.adjust_features(
                    x, face_location, face_scale, yaw_pitch_roll, control_flag
                )
            )
        # Variable initial_code and direction_code serve as a motion guide
        # extracted from the reference image.
        # This aims to tell the model what the starting motion should be.
        concatenated_features = self.combine_features(
            x, initial_code, direction_code, noisy_x, t_emb
        )
        outputs = self.decode_features(concatenated_features)
        return outputs, predicted_location, predicted_scale, predicted_pose

    def mfcc_speech_downsample(self, seq_input_vector):
        x = self.down_sample1(seq_input_vector.transpose(1, 2))
        return self.down_sample2(x).transpose(1, 2)

    def adjust_features(
        self, x, face_location, face_scale, yaw_pitch_roll, control_flag
    ):
        predicted_location, predicted_scale = 0, 0
        if "full_control" in self.infer_type:
            logger.info(f"full controllable. control_flag: {control_flag}")
            x_residual, predicted_location = self.adjust_location(
                x, face_location, control_flag
            )
            x = x + x_residual

            x_residual, predicted_scale = self.adjust_scale(x, face_scale, control_flag)
            x = x + x_residual

        x_residual, predicted_pose = self.adjust_pose(x, yaw_pitch_roll, control_flag)
        x = x + x_residual
        return x, predicted_location, predicted_scale, predicted_pose

    def adjust_location(self, x, face_location, control_flag):
        if control_flag:
            predicted_location = face_location
        else:
            predicted_location = self.location_predictor(x)
        return self.location_encoder(predicted_location), predicted_location

    def adjust_scale(self, x, face_scale, control_flag):
        if control_flag:
            predicted_face_scale = face_scale
        else:
            predicted_face_scale = self.face_scale_predictor(x)
        return self.face_scale_encoder(predicted_face_scale), predicted_face_scale

    def adjust_pose(self, x, yaw_pitch_roll, control_flag):
        if control_flag:
            predicted_pose = yaw_pitch_roll
        else:
            predicted_pose = self.pose_predictor(x)
        return self.pose_encoder(predicted_pose), predicted_pose

    def combine_features(self, x, initial_code, direction_code, noisy_x, t_emb):
        init_code_proj = (
            self.init_code_proj(initial_code).unsqueeze(1).repeat(1, x.size(1), 1)
        )
        noisy_feature = self.noisy_encoder(noisy_x)
        t_emb_feature = (
            self.t_encoder(t_emb.unsqueeze(1).float())
            .unsqueeze(1)
            .repeat(1, x.size(1), 1)
        )
        direction_code_feature = (
            self.encoder_direction_code(direction_code)
            .unsqueeze(1)
            .repeat(1, x.size(1), 1)
        )
        return torch.cat(
            (x, direction_code_feature, init_code_proj, noisy_feature, t_emb_feature),
            dim=-1,
        )

    def decode_features(self, concatenated_features):
        outputs, _ = self.coarse_decoder(concatenated_features, masks=None)
        return self.out_proj(outputs)