Spaces:
Build error
Build error
File size: 14,118 Bytes
3e165b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
import os
import shutil
import sys
import time
from importlib.util import find_spec
from pathlib import Path
from typing import Literal
import gradio as gr
import librosa
import numpy as np
import python_speech_features
import spaces
import torch
from gradio import Markdown
from moviepy.editor import (
AudioFileClip,
ImageClip,
VideoFileClip,
concatenate_videoclips,
)
from PIL import Image
from torch import Tensor
from torchvision.transforms import ToPILImage
from tqdm import tqdm
from visualizr import (
FRAMES_RESULT_SAVED_PATH,
MOTION_DIM,
RESULTS_DIR,
STAGE_1_CHECKPOINT_PATH,
TMP_MP4,
logger,
model_mapping,
)
from visualizr.config import TrainConfig
from visualizr.experiment import LitModel
from visualizr.LIA_Model import LIA_Model
from visualizr.templates import ffhq256_autoenc
def check_package_installed(package_name: str) -> bool:
return find_spec(package_name) is not None
def frames_to_video(input_path, audio_path, output_path, fps=25):
image_files = [
os.path.join(input_path, img) for img in sorted(os.listdir(input_path))
]
clips = [ImageClip(m).set_duration(1 / fps) for m in image_files]
video = concatenate_videoclips(clips, method="compose")
audio = AudioFileClip(audio_path)
final_video = video.set_audio(audio)
final_video.write_videofile(output_path, fps, "libx264", audio_codec="aac")
def load_image(filename: str, size: int) -> np.ndarray:
img: Image.Image = Image.open(filename).convert("RGB")
img_resized: Image.Image = img.resize((size, size))
img_np: np.ndarray = np.asarray(img_resized)
img_transposed: np.ndarray = np.transpose(img_np, (2, 0, 1)) # 3 x 256 x 256
return img_transposed / 255.0
def img_preprocessing(img_path: str, size: int) -> Tensor:
img_np: np.ndarray = load_image(img_path, size) # [0, 1]
img: Tensor = torch.from_numpy(img_np).unsqueeze(0).float() # [0, 1]
normalized_image: Tensor = (img - 0.5) * 2.0 # [-1, 1]
return normalized_image
def saved_image(img_tensor: Tensor, img_path: str) -> None:
pil_image_converter: ToPILImage = ToPILImage()
img = pil_image_converter(img_tensor.detach().cpu().squeeze(0))
img.save(img_path)
def load_stage_1_model() -> LIA_Model:
logger.info("Loading stage 1 model... ")
lia: LIA_Model = LIA_Model(motion_dim=MOTION_DIM, fusion_type="weighted_sum")
lia.load_lightning_model(STAGE_1_CHECKPOINT_PATH)
lia.to("cuda")
return lia
def load_stage_2_model(conf: TrainConfig, stage2_checkpoint_path: str) -> LitModel:
logger.info("Loading stage 2 model... ")
model = LitModel(conf)
state = torch.load(stage2_checkpoint_path, "cpu")
model.load_state_dict(state)
model.ema_model.eval()
model.ema_model.to("cuda")
return model
def init_conf(
infer_type: Literal[
"mfcc_full_control",
"mfcc_pose_only",
"hubert_pose_only",
"hubert_audio_only",
"hubert_full_control",
],
seed: int,
) -> TrainConfig:
logger.info("Initializing configuration... ")
conf: TrainConfig = ffhq256_autoenc()
conf.seed = seed
conf.decoder_layers = 2
conf.infer_type = infer_type
conf.motion_dim = MOTION_DIM
logger.info(f"infer_type: {infer_type}")
match infer_type:
case "mfcc_full_control":
conf.face_location = True
conf.face_scale = True
conf.mfcc = True
case "mfcc_pose_only":
conf.face_location = False
conf.face_scale = False
conf.mfcc = True
case "hubert_pose_only":
conf.face_location = False
conf.face_scale = False
conf.mfcc = False
case "hubert_audio_only":
conf.face_location = False
conf.face_scale = False
conf.mfcc = False
case "hubert_full_control":
conf.face_location = True
conf.face_scale = True
conf.mfcc = False
return conf
def main(
infer_type: Literal[
"mfcc_full_control",
"mfcc_pose_only",
"hubert_pose_only",
"hubert_audio_only",
"hubert_full_control",
],
image_path: str,
test_audio_path: str,
face_sr: bool,
pose_yaw: float,
pose_pitch: float,
pose_roll: float,
face_location: float,
face_scale: float,
step_t: int,
seed: int,
stage2_checkpoint_path: str,
):
global frame_end, audio_driven
if not os.path.exists(image_path):
logger.exception(f"{image_path} does not exist!")
sys.exit(0)
if not os.path.exists(test_audio_path):
logger.exception(f"{test_audio_path} does not exist!")
sys.exit(0)
image_name: str = Path(image_path).stem
audio_name: str = Path(test_audio_path).stem
predicted_video_256_path: Path = RESULTS_DIR / f"{image_name}-{audio_name}.mp4"
predicted_video_512_path: Path = RESULTS_DIR / f"{image_name}-{audio_name}_SR.mp4"
# ======Loading Stage 1 model=========
lia: LIA_Model = load_stage_1_model()
# ============================
conf: TrainConfig = init_conf(infer_type, seed)
img_source: Tensor = img_preprocessing(image_path, 256).to("cuda")
one_shot_lia_start, one_shot_lia_direction, feats = lia.get_start_direction_code(
img_source, img_source, img_source, img_source
)
# ======Loading Stage 2 model=========
model = load_stage_2_model(conf, stage2_checkpoint_path)
# =================================
# ======Audio Input=========
if conf.infer_type.startswith("mfcc"):
# MFCC features
wav, sr = librosa.load(test_audio_path, sr=16000)
input_values = python_speech_features.mfcc(
signal=wav, samplerate=sr, numcep=13, winlen=0.025, winstep=0.01
)
d_mfcc_feat = python_speech_features.base.delta(input_values, 1)
d_mfcc_feat2 = python_speech_features.base.delta(input_values, 2)
audio_driven_obj: np.ndarray = np.hstack(
(input_values, d_mfcc_feat, d_mfcc_feat2)
)
frame_start, frame_end = 0, int(audio_driven_obj.shape[0] / 4)
audio_start, audio_end = (
int(frame_start * 4),
int(frame_end * 4),
) # The video frame is fixed to 25 hz, and the audio is fixed to 100 hz
audio_driven = (
torch.Tensor(audio_driven_obj[audio_start:audio_end, :])
.unsqueeze(0)
.float()
.to("cuda")
)
elif conf.infer_type.startswith("hubert"):
# Hubert features
if not check_package_installed("transformers"):
logger.exception("Please install transformers module first.")
sys.exit(0)
hubert_model_path = "ckpts/chinese-hubert-large"
if not os.path.exists(hubert_model_path):
logger.exception(
"Please download the hubert weight into the ckpts path first."
)
sys.exit(0)
logger.info(
"You did not extract the audio features in advance, "
+ "extracting online now, which will increase processing delay"
)
start_time = time.time()
# load hubert model
from transformers import HubertModel, Wav2Vec2FeatureExtractor
audio_model = HubertModel.from_pretrained(hubert_model_path).to("cuda")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(hubert_model_path)
audio_model.feature_extractor._freeze_parameters() # skipcq: PYL-W0212
audio_model.eval()
# hubert model forward pass
audio, sr = librosa.load(test_audio_path, sr=16000)
input_values = feature_extractor(
audio,
sampling_rate=16000,
padding=True,
do_normalize=True,
return_tensors="pt",
).input_values
input_values = input_values.to("cuda")
ws_feats = []
with torch.no_grad():
outputs = audio_model(input_values, output_hidden_states=True)
for i in range(len(outputs.hidden_states)):
ws_feats.append(outputs.hidden_states[i].detach().cpu().numpy())
ws_feat_obj = np.array(ws_feats)
ws_feat_obj = np.squeeze(ws_feat_obj, 1)
ws_feat_obj = np.pad(
ws_feat_obj, ((0, 0), (0, 1), (0, 0)), "edge"
) # align the audio length with the video frame
execution_time = time.time() - start_time
logger.info(f"Extraction Audio Feature: {execution_time:.2f} Seconds")
audio_driven_obj = ws_feat_obj
frame_start, frame_end = 0, int(audio_driven_obj.shape[1] / 2)
audio_start, audio_end = (
int(frame_start * 2),
int(frame_end * 2),
) # The video frame is fixed to 25 hz, and the audio is fixed to 50 hz
audio_driven = (
torch.Tensor(audio_driven_obj[:, audio_start:audio_end, :])
.unsqueeze(0)
.float()
.to("cuda")
)
# ============================
# Diffusion Noise
noisy_t = torch.randn((1, frame_end, MOTION_DIM)).to("cuda")
# ======Inputs for Attribute Control=========
yaw_signal = torch.zeros(1, frame_end, 1).to("cuda") + pose_yaw
pitch_signal = torch.zeros(1, frame_end, 1).to("cuda") + pose_pitch
roll_signal = torch.zeros(1, frame_end, 1).to("cuda") + pose_roll
pose_signal = torch.cat((yaw_signal, pitch_signal, roll_signal), dim=-1)
pose_signal = torch.clamp(pose_signal, -1, 1)
face_location_signal = torch.zeros(1, frame_end, 1).to("cuda") + face_location
face_scale_tensor = torch.zeros(1, frame_end, 1).to("cuda") + face_scale
# ===========================================
start_time = time.time()
# ======Diffusion De-nosing Process=========
generated_directions = model.render(
one_shot_lia_start,
one_shot_lia_direction,
audio_driven,
face_location_signal,
face_scale_tensor,
pose_signal,
noisy_t,
step_t,
True,
)
# =========================================
execution_time = time.time() - start_time
logger.info(f"Motion Diffusion Model: {execution_time:.2f} Seconds")
generated_directions = generated_directions.detach().cpu().numpy()
start_time = time.time()
# ======Rendering images frame-by-frame=========
for pred_index in tqdm(range(generated_directions.shape[1])):
ori_img_recon = lia.render(
one_shot_lia_start,
torch.Tensor(generated_directions[:, pred_index, :]).to("cuda"),
feats,
)
ori_img_recon = ori_img_recon.clamp(-1, 1)
wav_pred = (ori_img_recon.detach() + 1) / 2
saved_image(
wav_pred, os.path.join(FRAMES_RESULT_SAVED_PATH, f"{pred_index:06d}.png")
)
# ==============================================
execution_time = time.time() - start_time
logger.info(f"Renderer Model: {execution_time:.2f} Seconds")
logger.info(f"Saving video at {predicted_video_256_path}")
frames_to_video(
str(FRAMES_RESULT_SAVED_PATH),
test_audio_path,
str(predicted_video_256_path),
)
shutil.rmtree(FRAMES_RESULT_SAVED_PATH)
# Enhancer
if face_sr and check_package_installed("gfpgan"):
from imageio import mimsave
from visualizr.face_sr.face_enhancer import enhancer_list
# Super-resolution
mimsave(
predicted_video_512_path / TMP_MP4,
enhancer_list(predicted_video_256_path, bg_upsampler=None),
fps=25.0,
)
# Merge audio and video
video_clip = VideoFileClip(predicted_video_512_path / TMP_MP4)
audio_clip = AudioFileClip(predicted_video_256_path)
final_clip = video_clip.set_audio(audio_clip)
final_clip.write_videofile(
predicted_video_512_path, codec="libx264", audio_codec="aac"
)
os.remove(predicted_video_512_path / TMP_MP4)
if face_sr:
return predicted_video_256_path, predicted_video_512_path
return predicted_video_256_path, predicted_video_256_path
@spaces.GPU(duration=300)
def generate_video(
uploaded_img: str,
uploaded_audio: str,
infer_type: Literal[
"mfcc_full_control",
"mfcc_pose_only",
"hubert_pose_only",
"hubert_audio_only",
"hubert_full_control",
],
pose_yaw: float,
pose_pitch: float,
pose_roll: float,
face_location: float,
face_scale: float,
step_t: int,
face_sr: bool,
seed: int,
):
if not uploaded_img or not uploaded_audio:
return None, Markdown(
"Error: Input image or audio file is empty. "
+ "Please check and upload both files."
)
try:
output_256_video_path, output_512_video_path = main(
infer_type,
uploaded_img,
uploaded_audio,
face_sr,
pose_yaw,
pose_pitch,
pose_roll,
face_location,
face_scale,
step_t,
seed,
model_mapping.get(
infer_type,
"default_checkpoint.ckpt",
),
)
if not os.path.exists(output_256_video_path):
return None, gr.Markdown(
"Error: Video generation failed. "
+ "Please check your inputs and try again."
)
if output_256_video_path == output_512_video_path:
return (
gr.Video(value=output_256_video_path),
None,
gr.Markdown("Video (256*256 only) generated successfully!"),
)
return (
gr.Video(value=output_256_video_path),
gr.Video(value=output_512_video_path),
gr.Markdown("Video generated successfully!"),
)
except Exception as e:
return (
None,
None,
gr.Markdown(f"Error: An unexpected error occurred - {str(e)}"),
)
|