Visualizr / src /visualizr /__init__.py
MH0386's picture
Upload folder using huggingface_hub
3e165b2 verified
from datetime import datetime
from os import getenv
from pathlib import Path
from dotenv import load_dotenv
from huggingface_hub import snapshot_download
from loguru import logger
from torch import cuda
load_dotenv()
DEBUG: bool = getenv(key="DEBUG", default="True").lower() == "true"
SERVER_NAME: str = getenv(key="GRADIO_SERVER_NAME", default="localhost")
SERVER_PORT: int = int(getenv(key="GRADIO_SERVER_PORT", default="8080"))
CURRENT_DATE: str = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
BASE_DIR: Path = Path.cwd()
RESULTS_DIR: Path = BASE_DIR / "results"
LOG_DIR: Path = BASE_DIR / "logs"
CHECKPOINT_DIR: Path = BASE_DIR / "ckpts"
AUDIO_FILE_PATH: Path = RESULTS_DIR / f"{CURRENT_DATE}.wav"
LOG_FILE_PATH: Path = LOG_DIR / f"{CURRENT_DATE}.log"
CUDA_AVAILABLE: bool = cuda.is_available()
FRAMES_RESULT_SAVED_PATH: Path = RESULTS_DIR / "frames"
STAGE_1_CHECKPOINT_PATH = CHECKPOINT_DIR / "stage1.ckpt"
VIDEO_PATH = RESULTS_DIR / f"{CURRENT_DATE}.mp4"
RESULTS_DIR.mkdir(exist_ok=True)
LOG_DIR.mkdir(exist_ok=True)
CHECKPOINT_DIR.mkdir(exist_ok=True)
FRAMES_RESULT_SAVED_PATH.mkdir(exist_ok=True)
MOTION_DIM: int = 20
TMP_MP4: str = ".tmp.mp4"
logger.add(
sink=LOG_FILE_PATH,
format="{time:YYYY-MM-DD at HH:mm:ss} | {level} | {message}",
colorize=True,
)
logger.info(f"CUDA Available: {CUDA_AVAILABLE}")
logger.info(f"Current date: {CURRENT_DATE}")
logger.info(f"Base directory: {BASE_DIR}")
logger.info(f"Results directory: {RESULTS_DIR}")
logger.info(f"Log directory: {LOG_DIR}")
logger.info(f"Checkpoint directory: {CHECKPOINT_DIR}")
model_mapping: dict[str, str] = {
"mfcc_pose_only": f"{CHECKPOINT_DIR}/stage2_pose_only_mfcc.ckpt",
"mfcc_full_control": f"{CHECKPOINT_DIR}/stage2_more_controllable_mfcc.ckpt",
"hubert_audio_only": f"{CHECKPOINT_DIR}/stage2_audio_only_hubert.ckpt",
"hubert_pose_only": f"{CHECKPOINT_DIR}/stage2_pose_only_hubert.ckpt",
"hubert_full_control": f"{CHECKPOINT_DIR}/stage2_full_control_hubert.ckpt",
}
snapshot_download(
repo_id="taocode/anitalker_ckpts", local_dir=CHECKPOINT_DIR, repo_type="model"
)