Spaces:
Runtime error
Runtime error
import os | |
import random | |
from typing import Dict | |
import librosa | |
import numpy as np | |
import python_speech_features | |
import torchvision | |
from PIL import Image | |
from torchvision import transforms | |
from tqdm import tqdm | |
class LatentDataLoader(object): | |
def __init__( | |
self, | |
window_size, | |
frame_jpgs, | |
lmd_feats_prefix, | |
audio_prefix, | |
raw_audio_prefix, | |
motion_latents_prefix, | |
pose_prefix, | |
db_name, | |
video_fps=25, | |
audio_hz=50, | |
size=256, | |
mfcc_mode=False, | |
): | |
self.window_size = window_size | |
self.lmd_feats_prefix = lmd_feats_prefix | |
self.audio_prefix = audio_prefix | |
self.pose_prefix = pose_prefix | |
self.video_fps = video_fps | |
self.audio_hz = audio_hz | |
self.db_name = db_name | |
self.raw_audio_prefix = raw_audio_prefix | |
self.mfcc_mode = mfcc_mode | |
self.transform = torchvision.transforms.Compose( | |
[ | |
transforms.Resize((size, size)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), | |
] | |
) | |
self.data = [] | |
for db_name in ["VoxCeleb2", "HDTF"]: | |
db_png_path = os.path.join(frame_jpgs, db_name) | |
for clip_name in tqdm(os.listdir(db_png_path)): | |
item_dict: Dict = {} | |
item_dict["clip_name"] = clip_name | |
item_dict["frame_count"] = len( | |
list(os.listdir(os.path.join(frame_jpgs, db_name, clip_name))) | |
) | |
item_dict["hubert_path"] = os.path.join( | |
audio_prefix, db_name, clip_name + ".npy" | |
) | |
item_dict["wav_path"] = os.path.join( | |
raw_audio_prefix, db_name, clip_name + ".wav" | |
) | |
item_dict["yaw_pitch_roll_path"] = os.path.join( | |
pose_prefix, | |
db_name, | |
"raw_videos_pose_yaw_pitch_roll", | |
clip_name + ".npy", | |
) | |
if not os.path.exists(item_dict["yaw_pitch_roll_path"]): | |
print(f"{db_name}'s {clip_name} miss yaw_pitch_roll_path") | |
continue | |
item_dict["yaw_pitch_roll"] = np.load(item_dict["yaw_pitch_roll_path"]) | |
item_dict["yaw_pitch_roll"] = ( | |
np.clip(item_dict["yaw_pitch_roll"], -90, 90) / 90.0 | |
) | |
if not os.path.exists(item_dict["wav_path"]): | |
print(f"{db_name}'s {clip_name} miss wav_path") | |
continue | |
if not os.path.exists(item_dict["hubert_path"]): | |
print(f"{db_name}'s {clip_name} miss hubert_path") | |
continue | |
if self.mfcc_mode: | |
wav, sr = librosa.load(item_dict["wav_path"], sr=16000) | |
input_values = python_speech_features.mfcc( | |
signal=wav, samplerate=sr, numcep=13, winlen=0.025, winstep=0.01 | |
) | |
d_mfcc_feat = python_speech_features.base.delta(input_values, 1) | |
d_mfcc_feat2 = python_speech_features.base.delta(input_values, 2) | |
input_values = np.hstack((input_values, d_mfcc_feat, d_mfcc_feat2)) | |
item_dict["hubert_obj"] = input_values | |
else: | |
item_dict["hubert_obj"] = np.load( | |
item_dict["hubert_path"], mmap_mode="r" | |
) | |
item_dict["lmd_path"] = os.path.join( | |
lmd_feats_prefix, db_name, clip_name + ".txt" | |
) | |
item_dict["lmd_obj_full"] = self.read_landmark_info( | |
item_dict["lmd_path"], upper_face=False | |
) | |
motion_start_path = os.path.join( | |
motion_latents_prefix, db_name, "motions", clip_name + ".npy" | |
) | |
motion_direction_path = os.path.join( | |
motion_latents_prefix, db_name, "directions", clip_name + ".npy" | |
) | |
if not os.path.exists(motion_start_path): | |
print(f"{db_name}'s {clip_name} miss motion_start_path") | |
continue | |
if not os.path.exists(motion_direction_path): | |
print(f"{db_name}'s {clip_name} miss motion_direction_path") | |
continue | |
item_dict["motion_start_obj"] = np.load(motion_start_path) | |
item_dict["motion_direction_obj"] = np.load(motion_direction_path) | |
if self.mfcc_mode: | |
min_len = min( | |
item_dict["lmd_obj_full"].shape[0], | |
item_dict["yaw_pitch_roll"].shape[0], | |
item_dict["motion_start_obj"].shape[0], | |
item_dict["motion_direction_obj"].shape[0], | |
int(item_dict["hubert_obj"].shape[0] / 4), | |
item_dict["frame_count"], | |
) | |
item_dict["frame_count"] = min_len | |
item_dict["hubert_obj"] = item_dict["hubert_obj"][: min_len * 4, :] | |
else: | |
min_len = min( | |
item_dict["lmd_obj_full"].shape[0], | |
item_dict["yaw_pitch_roll"].shape[0], | |
item_dict["motion_start_obj"].shape[0], | |
item_dict["motion_direction_obj"].shape[0], | |
int(item_dict["hubert_obj"].shape[1] / 2), | |
item_dict["frame_count"], | |
) | |
item_dict["frame_count"] = min_len | |
item_dict["hubert_obj"] = item_dict["hubert_obj"][ | |
:, : min_len * 2, : | |
] | |
if min_len < self.window_size * self.video_fps + 5: | |
continue | |
print("Db count:", len(self.data)) | |
def get_single_image(self, image_path): | |
img_source = Image.open(image_path).convert("RGB") | |
img_source = self.transform(img_source) | |
return img_source | |
def get_multiple_ranges(self, lists, multi_ranges): | |
# Ensure that multi_ranges is a list of tuples | |
if not all(isinstance(item, tuple) and len(item) == 2 for item in multi_ranges): | |
raise ValueError( | |
"multi_ranges must be a list of (start, end) tuples with exactly two elements each" | |
) | |
extracted_elements = [lists[start:end] for start, end in multi_ranges] | |
return [item for sublist in extracted_elements for item in sublist] | |
def read_landmark_info(self, lmd_path, upper_face=True): | |
with open(lmd_path, "r") as file: | |
lmd_lines = file.readlines() | |
lmd_lines.sort() | |
total_lmd_obj = [] | |
for i, line in enumerate(lmd_lines): | |
# Split the coordinates and filter out any empty strings | |
coords = [c for c in line.strip().split(" ") if c] | |
coords = coords[1:] # do not include the file name in the first row | |
lmd_obj = [] | |
if upper_face: | |
# Ensure that the coordinates are parsed as integers | |
for coord_pair in self.get_multiple_ranges( | |
coords, [(0, 3), (14, 27), (36, 48)] | |
): # 28个 | |
x, y = coord_pair.split("_") | |
lmd_obj.append((int(x) / 512, int(y) / 512)) | |
else: | |
for coord_pair in coords: | |
x, y = coord_pair.split("_") | |
lmd_obj.append((int(x) / 512, int(y) / 512)) | |
total_lmd_obj.append(lmd_obj) | |
return np.array(total_lmd_obj, dtype=np.float32) | |
def calculate_face_height(self, landmarks): | |
forehead_center = (landmarks[:, 21, :] + landmarks[:, 22, :]) / 2 | |
chin_bottom = landmarks[:, 8, :] | |
distances = np.linalg.norm(forehead_center - chin_bottom, axis=1, keepdims=True) | |
return distances | |
def __getitem__(self, index): | |
data_item = self.data[index] | |
hubert_obj = data_item["hubert_obj"] | |
frame_count = data_item["frame_count"] | |
lmd_obj_full = data_item["lmd_obj_full"] | |
yaw_pitch_roll = data_item["yaw_pitch_roll"] | |
motion_start_obj = data_item["motion_start_obj"] | |
motion_direction_obj = data_item["motion_direction_obj"] | |
frame_end_index = random.randint( | |
self.window_size * self.video_fps + 1, frame_count - 1 | |
) | |
frame_start_index = frame_end_index - self.window_size * self.video_fps | |
frame_hint_index = frame_start_index - 1 | |
audio_start_index = int(frame_start_index * (self.audio_hz / self.video_fps)) | |
audio_end_index = int(frame_end_index * (self.audio_hz / self.video_fps)) | |
if self.mfcc_mode: | |
audio_feats = hubert_obj[audio_start_index:audio_end_index, :] | |
else: | |
audio_feats = hubert_obj[:, audio_start_index:audio_end_index, :] | |
lmd_obj_full = lmd_obj_full[frame_hint_index:frame_end_index, :] | |
yaw_pitch_roll = yaw_pitch_roll[frame_start_index:frame_end_index, :] | |
motion_start = motion_start_obj[frame_hint_index] | |
motion_direction_start = motion_direction_obj[frame_hint_index] | |
motion_direction = motion_direction_obj[frame_start_index:frame_end_index, :] | |
return { | |
"motion_start": motion_start, | |
"motion_direction": motion_direction, | |
"audio_feats": audio_feats, | |
# '1:' means taking the first frame as the driven frame. | |
# '30' is the noise location, | |
# '0' means x coordinate | |
"face_location": lmd_obj_full[1:, 30, 0], | |
"face_scale": self.calculate_face_height(lmd_obj_full[1:, :, :]), | |
"yaw_pitch_roll": yaw_pitch_roll, | |
"motion_direction_start": motion_direction_start, | |
} | |
def __len__(self): | |
return len(self.data) | |