Visualizr / src /visualizr /templates.py
MH0386's picture
Upload folder using huggingface_hub
3e165b2 verified
from visualizr.choices import GenerativeType, ModelName
from visualizr.config import PretrainConfig, TrainConfig
def ddpm():
"""
base configuration for all DDIM-based models.
"""
conf = TrainConfig()
conf.batch_size = 32
conf.beatgans_gen_type = GenerativeType.ddim
conf.beta_scheduler = "linear"
conf.data_name = "ffhq"
conf.diffusion_type = "beatgans"
conf.eval_ema_every_samples = 200_000
conf.eval_every_samples = 200_000
conf.fp16 = True
conf.lr = 1e-4
conf.model_name = ModelName.beatgans_ddpm
conf.net_attn = (16,)
conf.net_beatgans_attn_head = 1
conf.net_beatgans_embed_channels = 512
conf.net_ch_mult = (1, 2, 4, 8)
conf.net_ch = 64
conf.sample_size = 32
conf.T_eval = 20
conf.T = 1000
conf.make_model_conf()
return conf
def autoenc_base():
"""
base configuration for all Diff-AE models.
"""
conf = TrainConfig()
conf.batch_size = 32
conf.beatgans_gen_type = GenerativeType.ddim
conf.beta_scheduler = "linear"
conf.data_name = "ffhq"
conf.diffusion_type = "beatgans"
conf.eval_ema_every_samples = 200_000
conf.eval_every_samples = 200_000
conf.fp16 = True
conf.lr = 1e-4
conf.model_name = ModelName.beatgans_autoenc
conf.net_attn = (16,)
conf.net_beatgans_attn_head = 1
conf.net_beatgans_embed_channels = 512
conf.net_beatgans_resnet_two_cond = True
conf.net_ch_mult = (1, 2, 4, 8)
conf.net_ch = 64
conf.net_enc_channel_mult = (1, 2, 4, 8, 8)
conf.net_enc_pool = "adaptivenonzero"
conf.sample_size = 32
conf.T_eval = 20
conf.T = 1000
conf.make_model_conf()
return conf
def ffhq64_ddpm():
conf = ddpm()
conf.data_name = "ffhqlmdb256"
conf.warmup = 0
conf.total_samples = 72_000_000
conf.scale_up_gpus(4)
return conf
def ffhq64_autoenc():
conf = autoenc_base()
conf.data_name = "ffhqlmdb256"
conf.warmup = 0
conf.total_samples = 72_000_000
conf.net_ch_mult = (1, 2, 4, 8)
conf.net_enc_channel_mult = (1, 2, 4, 8, 8)
conf.eval_every_samples = 1_000_000
conf.eval_ema_every_samples = 1_000_000
conf.scale_up_gpus(4)
conf.make_model_conf()
return conf
def celeba64d2c_ddpm():
conf = ffhq128_ddpm()
conf.data_name = "celebalmdb"
conf.eval_every_samples = 10_000_000
conf.eval_ema_every_samples = 10_000_000
conf.total_samples = 72_000_000
conf.name = "celeba64d2c_ddpm"
return conf
def celeba64d2c_autoenc():
conf = ffhq64_autoenc()
conf.data_name = "celebalmdb"
conf.eval_every_samples = 10_000_000
conf.eval_ema_every_samples = 10_000_000
conf.total_samples = 72_000_000
conf.name = "celeba64d2c_autoenc"
return conf
def ffhq128_ddpm():
conf = ddpm()
conf.data_name = "ffhqlmdb256"
conf.warmup = 0
conf.total_samples = 48_000_000
conf.img_size = 128
conf.net_ch = 128
# channels:
# 3 => 128 * 1 => 128 * 1 => 128 * 2 => 128 * 3 => 128 * 4
# sizes:
# 128 => 128 => 64 => 32 => 16 => 8
conf.net_ch_mult = (1, 1, 2, 3, 4)
conf.eval_every_samples = 1_000_000
conf.eval_ema_every_samples = 1_000_000
conf.scale_up_gpus(4)
conf.eval_ema_every_samples = 10_000_000
conf.eval_every_samples = 10_000_000
conf.make_model_conf()
return conf
def ffhq128_autoenc_base():
conf = autoenc_base()
conf.data_name = "ffhqlmdb256"
conf.scale_up_gpus(4)
conf.img_size = 128
conf.net_ch = 128
# final resolution = 8x8
conf.net_ch_mult = (1, 1, 2, 3, 4)
# final resolution = 4x4
conf.net_enc_channel_mult = (1, 1, 2, 3, 4, 4)
conf.eval_ema_every_samples = 10_000_000
conf.eval_every_samples = 10_000_000
conf.make_model_conf()
return conf
def ffhq256_autoenc():
conf = ffhq128_autoenc_base()
conf.img_size = 256
conf.net_ch = 128
conf.net_ch_mult = (1, 1, 2, 2, 4, 4)
conf.net_enc_channel_mult = (1, 1, 2, 2, 4, 4, 4)
conf.eval_every_samples = 10_000_000
conf.eval_ema_every_samples = 10_000_000
conf.total_samples = 200_000_000
conf.batch_size = 64
conf.make_model_conf()
conf.name = "ffhq256_autoenc"
return conf
def ffhq256_autoenc_eco():
conf = ffhq128_autoenc_base()
conf.img_size = 256
conf.net_ch = 128
conf.net_ch_mult = (1, 1, 2, 2, 4, 4)
conf.net_enc_channel_mult = (1, 1, 2, 2, 4, 4, 4)
conf.eval_every_samples = 10_000_000
conf.eval_ema_every_samples = 10_000_000
conf.total_samples = 200_000_000
conf.batch_size = 64
conf.make_model_conf()
conf.name = "ffhq256_autoenc_eco"
return conf
def ffhq128_ddpm_72M():
conf = ffhq128_ddpm()
conf.total_samples = 72_000_000
conf.name = "ffhq128_ddpm_72M"
return conf
def ffhq128_autoenc_72M():
conf = ffhq128_autoenc_base()
conf.total_samples = 72_000_000
conf.name = "ffhq128_autoenc_72M"
return conf
def ffhq128_ddpm_130M():
conf = ffhq128_ddpm()
conf.total_samples = 130_000_000
conf.eval_ema_every_samples = 10_000_000
conf.eval_every_samples = 10_000_000
conf.name = "ffhq128_ddpm_130M"
return conf
def ffhq128_autoenc_130M():
conf = ffhq128_autoenc_base()
conf.total_samples = 130_000_000
conf.eval_ema_every_samples = 10_000_000
conf.eval_every_samples = 10_000_000
conf.name = "ffhq128_autoenc_130M"
return conf
def horse128_ddpm():
conf = ffhq128_ddpm()
conf.data_name = "horse256"
conf.total_samples = 130_000_000
conf.eval_ema_every_samples = 10_000_000
conf.eval_every_samples = 10_000_000
conf.name = "horse128_ddpm"
return conf
def horse128_autoenc():
conf = ffhq128_autoenc_base()
conf.data_name = "horse256"
conf.total_samples = 130_000_000
conf.eval_ema_every_samples = 10_000_000
conf.eval_every_samples = 10_000_000
conf.name = "horse128_autoenc"
return conf
def bedroom128_ddpm():
conf = ffhq128_ddpm()
conf.data_name = "bedroom256"
conf.eval_ema_every_samples = 10_000_000
conf.eval_every_samples = 10_000_000
conf.total_samples = 120_000_000
conf.name = "bedroom128_ddpm"
return conf
def bedroom128_autoenc():
conf = ffhq128_autoenc_base()
conf.data_name = "bedroom256"
conf.eval_ema_every_samples = 10_000_000
conf.eval_every_samples = 10_000_000
conf.total_samples = 120_000_000
conf.name = "bedroom128_autoenc"
return conf
def pretrain_celeba64d2c_72M():
conf = celeba64d2c_autoenc()
conf.pretrain = PretrainConfig(
name="72M",
path=f"checkpoints/{celeba64d2c_autoenc().name}/last.ckpt",
)
conf.latent_infer_path = f"checkpoints/{celeba64d2c_autoenc().name}/latent.pkl"
return conf
def pretrain_ffhq128_autoenc72M():
conf = ffhq128_autoenc_base()
conf.postfix = ""
conf.pretrain = PretrainConfig(
name="72M",
path=f"checkpoints/{ffhq128_autoenc_72M().name}/last.ckpt",
)
conf.latent_infer_path = f"checkpoints/{ffhq128_autoenc_72M().name}/latent.pkl"
return conf
def pretrain_ffhq128_autoenc130M():
conf = ffhq128_autoenc_base()
conf.pretrain = PretrainConfig(
name="130M",
path=f"checkpoints/{ffhq128_autoenc_130M().name}/last.ckpt",
)
conf.latent_infer_path = f"checkpoints/{ffhq128_autoenc_130M().name}/latent.pkl"
return conf
def pretrain_ffhq256_autoenc():
conf = ffhq256_autoenc()
conf.pretrain = PretrainConfig(
name="90M",
path=f"checkpoints/{ffhq256_autoenc().name}/last.ckpt",
)
conf.latent_infer_path = f"checkpoints/{ffhq256_autoenc().name}/latent.pkl"
return conf
def pretrain_horse128():
conf = horse128_autoenc()
conf.pretrain = PretrainConfig(
name="82M",
path=f"checkpoints/{horse128_autoenc().name}/last.ckpt",
)
conf.latent_infer_path = f"checkpoints/{horse128_autoenc().name}/latent.pkl"
return conf
def pretrain_bedroom128():
conf = bedroom128_autoenc()
conf.pretrain = PretrainConfig(
name="120M",
path=f"checkpoints/{bedroom128_autoenc().name}/last.ckpt",
)
conf.latent_infer_path = f"checkpoints/{bedroom128_autoenc().name}/latent.pkl"
return conf