File size: 11,954 Bytes
bf7e729
 
 
 
5271c2e
 
 
 
 
 
2181ea6
bf7e729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1999f4d
 
 
 
 
 
 
 
 
 
bf7e729
 
 
 
 
 
 
 
 
 
 
 
 
 
1999f4d
 
bf7e729
 
 
 
1999f4d
 
bf7e729
 
 
 
 
1999f4d
 
bf7e729
 
 
 
 
 
 
 
 
 
 
 
1999f4d
bf7e729
 
 
1999f4d
 
 
 
 
 
 
bf7e729
 
1999f4d
bf7e729
 
 
 
 
1999f4d
 
 
bf7e729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2aed0aa
 
 
 
 
 
bf7e729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1999f4d
 
 
bf7e729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5271c2e
 
 
 
 
2181ea6
bf7e729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import pandas as pd
import os
import sys
from datetime import datetime

# Use absolute imports to avoid relative import issues
try:
    from src.config import FIGHTERS_CSV_PATH
except ImportError:
    # Fallback for when running directly
    from ..config import FIGHTERS_CSV_PATH

def _clean_numeric_column(series):
    """A helper to clean string columns into numbers, handling errors."""
    series_str = series.astype(str)
    return pd.to_numeric(series_str.str.replace(r'[^0-9.]', '', regex=True), errors='coerce')

def _calculate_age(dob_str, fight_date_str):
    """Calculates age in years from a date of birth string and fight date string."""
    if pd.isna(dob_str) or not dob_str:
        return None
    try:
        dob = datetime.strptime(dob_str, '%b %d, %Y')
        fight_date = datetime.strptime(fight_date_str, '%B %d, %Y')
        return (fight_date - dob).days / 365.25
    except (ValueError, TypeError):
        return None

def _parse_round_time_to_seconds(round_str, time_str):
    """Converts fight duration from round and time to total seconds."""
    try:
        rounds = int(round_str)
        minutes, seconds = map(int, time_str.split(':'))
        # Assuming 5-minute rounds for calculation simplicity
        return ((rounds - 1) * 5 * 60) + (minutes * 60) + seconds
    except (ValueError, TypeError, AttributeError):
        return 0

def _parse_striking_stats(stat_str):
    """Parses striking stats string like '10 of 20' into (landed, attempted)."""
    try:
        landed, attempted = map(int, stat_str.split(' of '))
        return landed, attempted
    except (ValueError, TypeError, AttributeError):
        return 0, 0

def _to_int_safe(val):
    """Safely converts a value to an integer, returning 0 if it's invalid or empty."""
    if pd.isna(val):
        return 0
    try:
        # handle strings with whitespace or empty strings
        return int(str(val).strip() or 0)
    except (ValueError, TypeError):
        return 0

def _get_fighter_history_stats(fighter_name, current_fight_date, fighter_history, fighters_df, n=5):
    """
    Calculates performance statistics for a fighter based on their last n fights.
    """
    past_fights = [f for f in fighter_history if f['date_obj'] < current_fight_date]
    last_n_fights = past_fights[-n:]

    if not last_n_fights:
        # Return a default dictionary with the correct keys for a fighter with no history
        return {
            'wins_last_n': 0,
            'avg_opp_elo_last_n': 1500, # Assume average ELO for first opponent
            'ko_percent_last_n': 0,
            'sig_str_landed_per_min_last_n': 0,
            'takedown_accuracy_last_n': 0,
            'sub_attempts_per_min_last_n': 0,
        }

    stats = {
        'wins': 0, 'ko_wins': 0, 'total_time_secs': 0,
        'sig_str_landed': 0, 'opponent_elos': [],
        'td_landed': 0, 'td_attempted': 0, 'sub_attempts': 0
    }

    for fight in last_n_fights:
        is_fighter_1 = (fight['fighter_1'] == fighter_name)
        opponent_name = fight['fighter_2'] if is_fighter_1 else fight['fighter_1']
        
        f_prefix = 'f1' if is_fighter_1 else 'f2'

        if fight['winner'] == fighter_name:
            stats['wins'] += 1
            if 'KO' in fight['method']:
                stats['ko_wins'] += 1

        if opponent_name in fighters_df.index:
            opp_elo = fighters_df.loc[opponent_name, 'elo']
            stats['opponent_elos'].append(opp_elo if pd.notna(opp_elo) else 1500)
        
        stats['total_time_secs'] += _parse_round_time_to_seconds(fight['round'], fight['time'])
        
        sig_str_stat = fight.get(f'{f_prefix}_sig_str', '0 of 0')
        landed, _ = _parse_striking_stats(sig_str_stat)
        stats['sig_str_landed'] += landed

        td_stat = fight.get(f'{f_prefix}_td', '0 of 0')
        td_landed, td_attempted = _parse_striking_stats(td_stat) # Can reuse this parser
        stats['td_landed'] += td_landed
        stats['td_attempted'] += td_attempted
        
        stats['sub_attempts'] += _to_int_safe(fight.get(f'{f_prefix}_sub_att'))

    # Final calculations
    avg_opp_elo = sum(stats['opponent_elos']) / len(stats['opponent_elos']) if stats['opponent_elos'] else 1500
    total_minutes = stats['total_time_secs'] / 60 if stats['total_time_secs'] > 0 else 0
    
    return {
        'wins_last_n': stats['wins'],
        'avg_opp_elo_last_n': avg_opp_elo,
        'ko_percent_last_n': (stats['ko_wins'] / stats['wins']) if stats['wins'] > 0 else 0,
        'sig_str_landed_per_min_last_n': (stats['sig_str_landed'] / total_minutes) if total_minutes > 0 else 0,
        'takedown_accuracy_last_n': (stats['td_landed'] / stats['td_attempted']) if stats['td_attempted'] > 0 else 0,
        'sub_attempts_per_min_last_n': (stats['sub_attempts'] / total_minutes) if total_minutes > 0 else 0,
    }

def preprocess_for_ml(fights_to_process, fighters_csv_path):
    """
    Transforms raw fight and fighter data into a feature matrix (X) and target vector (y)
    suitable for a binary classification machine learning model.

    Args:
        fights_to_process (list of dict): The list of fights to process.
        fighters_csv_path (str): Path to the CSV file with all fighter stats.

    Returns:
        pd.DataFrame: Feature matrix X.
        pd.Series: Target vector y.
        pd.DataFrame: Metadata DataFrame.
    """
    if not os.path.exists(fighters_csv_path):
        raise FileNotFoundError(f"Fighters data not found at '{fighters_csv_path}'.")

    fighters_df = pd.read_csv(fighters_csv_path)
    
    # 1. Prepare fighters data for merging
    fighters_prepared = fighters_df.copy()
    fighters_prepared['full_name'] = fighters_prepared['first_name'] + ' ' + fighters_prepared['last_name']
    
    # Handle duplicate fighter names by keeping the first entry
    fighters_prepared = fighters_prepared.drop_duplicates(subset=['full_name'], keep='first')
    fighters_prepared = fighters_prepared.set_index('full_name')

    for col in ['height_cm', 'reach_in', 'elo']:
        if col in fighters_prepared.columns:
            fighters_prepared[col] = _clean_numeric_column(fighters_prepared[col])

    # 2. Pre-calculate fighter histories to speed up lookups
    # And convert date strings to datetime objects once
    for fight in fights_to_process:
        try:
            # This will work if event_date is a string
            fight['date_obj'] = datetime.strptime(fight['event_date'], '%B %d, %Y')
        except TypeError:
            # This will be triggered if it's already a date-like object (e.g., Timestamp)
            fight['date_obj'] = fight['event_date']
    
    fighter_histories = {}
    for fighter_name in fighters_prepared.index:
        history = [f for f in fights_to_process if fighter_name in (f['fighter_1'], f['fighter_2'])]
        fighter_histories[fighter_name] = sorted(history, key=lambda x: x['date_obj'])

    # 3. Process fights to create features and targets
    feature_list = []
    target_list = []
    metadata_list = []

    for fight in fights_to_process:
        # Per the dataset's design, fighter_1 is always the winner.
        f1_name, f2_name = fight['fighter_1'], fight['fighter_2']

        if f1_name not in fighters_prepared.index or f2_name not in fighters_prepared.index:
            continue

        f1_stats, f2_stats = fighters_prepared.loc[f1_name], fighters_prepared.loc[f2_name]
        
        if isinstance(f1_stats, pd.DataFrame): f1_stats = f1_stats.iloc[0]
        if isinstance(f2_stats, pd.DataFrame): f2_stats = f2_stats.iloc[0]

        # Calculate ages for both fighters
        f1_age = _calculate_age(f1_stats.get('dob'), fight['event_date'])
        f2_age = _calculate_age(f2_stats.get('dob'), fight['event_date'])

        # Get historical stats for both fighters
        f1_hist_stats = _get_fighter_history_stats(f1_name, fight['date_obj'], fighter_histories.get(f1_name, []), fighters_prepared)
        f2_hist_stats = _get_fighter_history_stats(f2_name, fight['date_obj'], fighter_histories.get(f2_name, []), fighters_prepared)
        
        # --- Create two training examples from each fight for a balanced dataset ---

        # 1. The "Win" case: (fighter_1 - fighter_2)
        features_win = {
            # Original diffs
            'elo_diff': f1_stats.get('elo', 1500) - f2_stats.get('elo', 1500),
            'height_diff_cm': f1_stats.get('height_cm', 0) - f2_stats.get('height_cm', 0),
            'reach_diff_in': f1_stats.get('reach_in', 0) - f2_stats.get('reach_in', 0),
            'age_diff_years': (f1_age - f2_age) if f1_age and f2_age else 0,
            'stance_is_different': 1 if f1_stats.get('stance') != f2_stats.get('stance') else 0,
            # New historical diffs
            'wins_last_5_diff': f1_hist_stats['wins_last_n'] - f2_hist_stats['wins_last_n'],
            'avg_opp_elo_last_5_diff': f1_hist_stats['avg_opp_elo_last_n'] - f2_hist_stats['avg_opp_elo_last_n'],
            'ko_percent_last_5_diff': f1_hist_stats['ko_percent_last_n'] - f2_hist_stats['ko_percent_last_n'],
            'sig_str_landed_per_min_last_5_diff': f1_hist_stats['sig_str_landed_per_min_last_n'] - f2_hist_stats['sig_str_landed_per_min_last_n'],
            # Grappling features
            'takedown_accuracy_last_5_diff': f1_hist_stats['takedown_accuracy_last_n'] - f2_hist_stats['takedown_accuracy_last_n'],
            'sub_attempts_per_min_last_5_diff': f1_hist_stats['sub_attempts_per_min_last_n'] - f2_hist_stats['sub_attempts_per_min_last_n'],
        }
        feature_list.append(features_win)
        target_list.append(1)  # 1 represents a win

        # 2. The "Loss" case: (fighter_2 - fighter_1)
        # We invert the differences for the losing case.
        features_loss = {key: -value for key, value in features_win.items()}
        # Stance difference is symmetric; it doesn't get inverted.
        features_loss['stance_is_different'] = features_win['stance_is_different']
        
        feature_list.append(features_loss)
        target_list.append(0)  # 0 represents a loss

        # Add metadata for both generated samples
        # The 'winner' and 'loser' are consistent with the original data structure
        metadata_list.append({
            'winner': f1_name, 'loser': f2_name, 'event_date': fight['event_date']
        })
        metadata_list.append({
            'winner': f1_name, 'loser': f2_name, 'event_date': fight['event_date']
        })

    X = pd.DataFrame(feature_list).fillna(0)
    y = pd.Series(target_list, name='winner')
    metadata = pd.DataFrame(metadata_list)

    print(f"Preprocessing complete. Generated {X.shape[0]} samples with {X.shape[1]} features.")
    return X, y, metadata

if __name__ == '__main__':
    # Use absolute imports to avoid relative import issues
    try:
        from src.predict.pipeline import PredictionPipeline
    except ImportError:
        # Fallback for when running directly
        from .pipeline import PredictionPipeline
    
    print("--- Running Preprocessing Example ---")
    
    pipeline = PredictionPipeline(models=[])
    try:
        pipeline._load_and_split_data()
        if pipeline.train_fights:
            X_train, y_train, metadata_train = preprocess_for_ml(pipeline.train_fights, FIGHTERS_CSV_PATH)
            print("\nTraining Data Shape:")
            print("X_train:", X_train.shape)
            print("y_train:", y_train.shape)
            print("metadata_train:", metadata_train.shape)

            print("\nLast 5 rows of X_train (showing populated historical features):")
            print(X_train.tail())
            
            print("\nTarget distribution (0=Loss, 1=Win):")
            print(y_train.value_counts())
            
            print("\nMetadata for last 5 rows:")
            print(metadata_train.tail())

    except FileNotFoundError as e:
        print(e)
        print("Please run the scraping pipeline first ('python -m src.scrape.main').")