Spaces:
Running
Running
File size: 11,954 Bytes
bf7e729 5271c2e 2181ea6 bf7e729 1999f4d bf7e729 1999f4d bf7e729 1999f4d bf7e729 1999f4d bf7e729 1999f4d bf7e729 1999f4d bf7e729 1999f4d bf7e729 1999f4d bf7e729 2aed0aa bf7e729 1999f4d bf7e729 5271c2e 2181ea6 bf7e729 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import pandas as pd
import os
import sys
from datetime import datetime
# Use absolute imports to avoid relative import issues
try:
from src.config import FIGHTERS_CSV_PATH
except ImportError:
# Fallback for when running directly
from ..config import FIGHTERS_CSV_PATH
def _clean_numeric_column(series):
"""A helper to clean string columns into numbers, handling errors."""
series_str = series.astype(str)
return pd.to_numeric(series_str.str.replace(r'[^0-9.]', '', regex=True), errors='coerce')
def _calculate_age(dob_str, fight_date_str):
"""Calculates age in years from a date of birth string and fight date string."""
if pd.isna(dob_str) or not dob_str:
return None
try:
dob = datetime.strptime(dob_str, '%b %d, %Y')
fight_date = datetime.strptime(fight_date_str, '%B %d, %Y')
return (fight_date - dob).days / 365.25
except (ValueError, TypeError):
return None
def _parse_round_time_to_seconds(round_str, time_str):
"""Converts fight duration from round and time to total seconds."""
try:
rounds = int(round_str)
minutes, seconds = map(int, time_str.split(':'))
# Assuming 5-minute rounds for calculation simplicity
return ((rounds - 1) * 5 * 60) + (minutes * 60) + seconds
except (ValueError, TypeError, AttributeError):
return 0
def _parse_striking_stats(stat_str):
"""Parses striking stats string like '10 of 20' into (landed, attempted)."""
try:
landed, attempted = map(int, stat_str.split(' of '))
return landed, attempted
except (ValueError, TypeError, AttributeError):
return 0, 0
def _to_int_safe(val):
"""Safely converts a value to an integer, returning 0 if it's invalid or empty."""
if pd.isna(val):
return 0
try:
# handle strings with whitespace or empty strings
return int(str(val).strip() or 0)
except (ValueError, TypeError):
return 0
def _get_fighter_history_stats(fighter_name, current_fight_date, fighter_history, fighters_df, n=5):
"""
Calculates performance statistics for a fighter based on their last n fights.
"""
past_fights = [f for f in fighter_history if f['date_obj'] < current_fight_date]
last_n_fights = past_fights[-n:]
if not last_n_fights:
# Return a default dictionary with the correct keys for a fighter with no history
return {
'wins_last_n': 0,
'avg_opp_elo_last_n': 1500, # Assume average ELO for first opponent
'ko_percent_last_n': 0,
'sig_str_landed_per_min_last_n': 0,
'takedown_accuracy_last_n': 0,
'sub_attempts_per_min_last_n': 0,
}
stats = {
'wins': 0, 'ko_wins': 0, 'total_time_secs': 0,
'sig_str_landed': 0, 'opponent_elos': [],
'td_landed': 0, 'td_attempted': 0, 'sub_attempts': 0
}
for fight in last_n_fights:
is_fighter_1 = (fight['fighter_1'] == fighter_name)
opponent_name = fight['fighter_2'] if is_fighter_1 else fight['fighter_1']
f_prefix = 'f1' if is_fighter_1 else 'f2'
if fight['winner'] == fighter_name:
stats['wins'] += 1
if 'KO' in fight['method']:
stats['ko_wins'] += 1
if opponent_name in fighters_df.index:
opp_elo = fighters_df.loc[opponent_name, 'elo']
stats['opponent_elos'].append(opp_elo if pd.notna(opp_elo) else 1500)
stats['total_time_secs'] += _parse_round_time_to_seconds(fight['round'], fight['time'])
sig_str_stat = fight.get(f'{f_prefix}_sig_str', '0 of 0')
landed, _ = _parse_striking_stats(sig_str_stat)
stats['sig_str_landed'] += landed
td_stat = fight.get(f'{f_prefix}_td', '0 of 0')
td_landed, td_attempted = _parse_striking_stats(td_stat) # Can reuse this parser
stats['td_landed'] += td_landed
stats['td_attempted'] += td_attempted
stats['sub_attempts'] += _to_int_safe(fight.get(f'{f_prefix}_sub_att'))
# Final calculations
avg_opp_elo = sum(stats['opponent_elos']) / len(stats['opponent_elos']) if stats['opponent_elos'] else 1500
total_minutes = stats['total_time_secs'] / 60 if stats['total_time_secs'] > 0 else 0
return {
'wins_last_n': stats['wins'],
'avg_opp_elo_last_n': avg_opp_elo,
'ko_percent_last_n': (stats['ko_wins'] / stats['wins']) if stats['wins'] > 0 else 0,
'sig_str_landed_per_min_last_n': (stats['sig_str_landed'] / total_minutes) if total_minutes > 0 else 0,
'takedown_accuracy_last_n': (stats['td_landed'] / stats['td_attempted']) if stats['td_attempted'] > 0 else 0,
'sub_attempts_per_min_last_n': (stats['sub_attempts'] / total_minutes) if total_minutes > 0 else 0,
}
def preprocess_for_ml(fights_to_process, fighters_csv_path):
"""
Transforms raw fight and fighter data into a feature matrix (X) and target vector (y)
suitable for a binary classification machine learning model.
Args:
fights_to_process (list of dict): The list of fights to process.
fighters_csv_path (str): Path to the CSV file with all fighter stats.
Returns:
pd.DataFrame: Feature matrix X.
pd.Series: Target vector y.
pd.DataFrame: Metadata DataFrame.
"""
if not os.path.exists(fighters_csv_path):
raise FileNotFoundError(f"Fighters data not found at '{fighters_csv_path}'.")
fighters_df = pd.read_csv(fighters_csv_path)
# 1. Prepare fighters data for merging
fighters_prepared = fighters_df.copy()
fighters_prepared['full_name'] = fighters_prepared['first_name'] + ' ' + fighters_prepared['last_name']
# Handle duplicate fighter names by keeping the first entry
fighters_prepared = fighters_prepared.drop_duplicates(subset=['full_name'], keep='first')
fighters_prepared = fighters_prepared.set_index('full_name')
for col in ['height_cm', 'reach_in', 'elo']:
if col in fighters_prepared.columns:
fighters_prepared[col] = _clean_numeric_column(fighters_prepared[col])
# 2. Pre-calculate fighter histories to speed up lookups
# And convert date strings to datetime objects once
for fight in fights_to_process:
try:
# This will work if event_date is a string
fight['date_obj'] = datetime.strptime(fight['event_date'], '%B %d, %Y')
except TypeError:
# This will be triggered if it's already a date-like object (e.g., Timestamp)
fight['date_obj'] = fight['event_date']
fighter_histories = {}
for fighter_name in fighters_prepared.index:
history = [f for f in fights_to_process if fighter_name in (f['fighter_1'], f['fighter_2'])]
fighter_histories[fighter_name] = sorted(history, key=lambda x: x['date_obj'])
# 3. Process fights to create features and targets
feature_list = []
target_list = []
metadata_list = []
for fight in fights_to_process:
# Per the dataset's design, fighter_1 is always the winner.
f1_name, f2_name = fight['fighter_1'], fight['fighter_2']
if f1_name not in fighters_prepared.index or f2_name not in fighters_prepared.index:
continue
f1_stats, f2_stats = fighters_prepared.loc[f1_name], fighters_prepared.loc[f2_name]
if isinstance(f1_stats, pd.DataFrame): f1_stats = f1_stats.iloc[0]
if isinstance(f2_stats, pd.DataFrame): f2_stats = f2_stats.iloc[0]
# Calculate ages for both fighters
f1_age = _calculate_age(f1_stats.get('dob'), fight['event_date'])
f2_age = _calculate_age(f2_stats.get('dob'), fight['event_date'])
# Get historical stats for both fighters
f1_hist_stats = _get_fighter_history_stats(f1_name, fight['date_obj'], fighter_histories.get(f1_name, []), fighters_prepared)
f2_hist_stats = _get_fighter_history_stats(f2_name, fight['date_obj'], fighter_histories.get(f2_name, []), fighters_prepared)
# --- Create two training examples from each fight for a balanced dataset ---
# 1. The "Win" case: (fighter_1 - fighter_2)
features_win = {
# Original diffs
'elo_diff': f1_stats.get('elo', 1500) - f2_stats.get('elo', 1500),
'height_diff_cm': f1_stats.get('height_cm', 0) - f2_stats.get('height_cm', 0),
'reach_diff_in': f1_stats.get('reach_in', 0) - f2_stats.get('reach_in', 0),
'age_diff_years': (f1_age - f2_age) if f1_age and f2_age else 0,
'stance_is_different': 1 if f1_stats.get('stance') != f2_stats.get('stance') else 0,
# New historical diffs
'wins_last_5_diff': f1_hist_stats['wins_last_n'] - f2_hist_stats['wins_last_n'],
'avg_opp_elo_last_5_diff': f1_hist_stats['avg_opp_elo_last_n'] - f2_hist_stats['avg_opp_elo_last_n'],
'ko_percent_last_5_diff': f1_hist_stats['ko_percent_last_n'] - f2_hist_stats['ko_percent_last_n'],
'sig_str_landed_per_min_last_5_diff': f1_hist_stats['sig_str_landed_per_min_last_n'] - f2_hist_stats['sig_str_landed_per_min_last_n'],
# Grappling features
'takedown_accuracy_last_5_diff': f1_hist_stats['takedown_accuracy_last_n'] - f2_hist_stats['takedown_accuracy_last_n'],
'sub_attempts_per_min_last_5_diff': f1_hist_stats['sub_attempts_per_min_last_n'] - f2_hist_stats['sub_attempts_per_min_last_n'],
}
feature_list.append(features_win)
target_list.append(1) # 1 represents a win
# 2. The "Loss" case: (fighter_2 - fighter_1)
# We invert the differences for the losing case.
features_loss = {key: -value for key, value in features_win.items()}
# Stance difference is symmetric; it doesn't get inverted.
features_loss['stance_is_different'] = features_win['stance_is_different']
feature_list.append(features_loss)
target_list.append(0) # 0 represents a loss
# Add metadata for both generated samples
# The 'winner' and 'loser' are consistent with the original data structure
metadata_list.append({
'winner': f1_name, 'loser': f2_name, 'event_date': fight['event_date']
})
metadata_list.append({
'winner': f1_name, 'loser': f2_name, 'event_date': fight['event_date']
})
X = pd.DataFrame(feature_list).fillna(0)
y = pd.Series(target_list, name='winner')
metadata = pd.DataFrame(metadata_list)
print(f"Preprocessing complete. Generated {X.shape[0]} samples with {X.shape[1]} features.")
return X, y, metadata
if __name__ == '__main__':
# Use absolute imports to avoid relative import issues
try:
from src.predict.pipeline import PredictionPipeline
except ImportError:
# Fallback for when running directly
from .pipeline import PredictionPipeline
print("--- Running Preprocessing Example ---")
pipeline = PredictionPipeline(models=[])
try:
pipeline._load_and_split_data()
if pipeline.train_fights:
X_train, y_train, metadata_train = preprocess_for_ml(pipeline.train_fights, FIGHTERS_CSV_PATH)
print("\nTraining Data Shape:")
print("X_train:", X_train.shape)
print("y_train:", y_train.shape)
print("metadata_train:", metadata_train.shape)
print("\nLast 5 rows of X_train (showing populated historical features):")
print(X_train.tail())
print("\nTarget distribution (0=Loss, 1=Win):")
print(y_train.value_counts())
print("\nMetadata for last 5 rows:")
print(metadata_train.tail())
except FileNotFoundError as e:
print(e)
print("Please run the scraping pipeline first ('python -m src.scrape.main').")
|