ufc-predictor / src /predict /preprocess.py
AlvaroMros's picture
Add grappling features to fighter stats and ML pipeline
1999f4d
raw
history blame
11.6 kB
import pandas as pd
import os
import sys
from datetime import datetime
from ..config import FIGHTERS_CSV_PATH
def _clean_numeric_column(series):
"""A helper to clean string columns into numbers, handling errors."""
series_str = series.astype(str)
return pd.to_numeric(series_str.str.replace(r'[^0-9.]', '', regex=True), errors='coerce')
def _calculate_age(dob_str, fight_date_str):
"""Calculates age in years from a date of birth string and fight date string."""
if pd.isna(dob_str) or not dob_str:
return None
try:
dob = datetime.strptime(dob_str, '%b %d, %Y')
fight_date = datetime.strptime(fight_date_str, '%B %d, %Y')
return (fight_date - dob).days / 365.25
except (ValueError, TypeError):
return None
def _parse_round_time_to_seconds(round_str, time_str):
"""Converts fight duration from round and time to total seconds."""
try:
rounds = int(round_str)
minutes, seconds = map(int, time_str.split(':'))
# Assuming 5-minute rounds for calculation simplicity
return ((rounds - 1) * 5 * 60) + (minutes * 60) + seconds
except (ValueError, TypeError, AttributeError):
return 0
def _parse_striking_stats(stat_str):
"""Parses striking stats string like '10 of 20' into (landed, attempted)."""
try:
landed, attempted = map(int, stat_str.split(' of '))
return landed, attempted
except (ValueError, TypeError, AttributeError):
return 0, 0
def _to_int_safe(val):
"""Safely converts a value to an integer, returning 0 if it's invalid or empty."""
if pd.isna(val):
return 0
try:
# handle strings with whitespace or empty strings
return int(str(val).strip() or 0)
except (ValueError, TypeError):
return 0
def _get_fighter_history_stats(fighter_name, current_fight_date, fighter_history, fighters_df, n=5):
"""
Calculates performance statistics for a fighter based on their last n fights.
"""
past_fights = [f for f in fighter_history if f['date_obj'] < current_fight_date]
last_n_fights = past_fights[-n:]
if not last_n_fights:
# Return a default dictionary with the correct keys for a fighter with no history
return {
'wins_last_n': 0,
'avg_opp_elo_last_n': 1500, # Assume average ELO for first opponent
'ko_percent_last_n': 0,
'sig_str_landed_per_min_last_n': 0,
'takedown_accuracy_last_n': 0,
'sub_attempts_per_min_last_n': 0,
}
stats = {
'wins': 0, 'ko_wins': 0, 'total_time_secs': 0,
'sig_str_landed': 0, 'opponent_elos': [],
'td_landed': 0, 'td_attempted': 0, 'sub_attempts': 0
}
for fight in last_n_fights:
is_fighter_1 = (fight['fighter_1'] == fighter_name)
opponent_name = fight['fighter_2'] if is_fighter_1 else fight['fighter_1']
f_prefix = 'f1' if is_fighter_1 else 'f2'
if fight['winner'] == fighter_name:
stats['wins'] += 1
if 'KO' in fight['method']:
stats['ko_wins'] += 1
if opponent_name in fighters_df.index:
opp_elo = fighters_df.loc[opponent_name, 'elo']
stats['opponent_elos'].append(opp_elo if pd.notna(opp_elo) else 1500)
stats['total_time_secs'] += _parse_round_time_to_seconds(fight['round'], fight['time'])
sig_str_stat = fight.get(f'{f_prefix}_sig_str', '0 of 0')
landed, _ = _parse_striking_stats(sig_str_stat)
stats['sig_str_landed'] += landed
td_stat = fight.get(f'{f_prefix}_td', '0 of 0')
td_landed, td_attempted = _parse_striking_stats(td_stat) # Can reuse this parser
stats['td_landed'] += td_landed
stats['td_attempted'] += td_attempted
stats['sub_attempts'] += _to_int_safe(fight.get(f'{f_prefix}_sub_att'))
# Final calculations
avg_opp_elo = sum(stats['opponent_elos']) / len(stats['opponent_elos']) if stats['opponent_elos'] else 1500
total_minutes = stats['total_time_secs'] / 60 if stats['total_time_secs'] > 0 else 0
return {
'wins_last_n': stats['wins'],
'avg_opp_elo_last_n': avg_opp_elo,
'ko_percent_last_n': (stats['ko_wins'] / stats['wins']) if stats['wins'] > 0 else 0,
'sig_str_landed_per_min_last_n': (stats['sig_str_landed'] / total_minutes) if total_minutes > 0 else 0,
'takedown_accuracy_last_n': (stats['td_landed'] / stats['td_attempted']) if stats['td_attempted'] > 0 else 0,
'sub_attempts_per_min_last_n': (stats['sub_attempts'] / total_minutes) if total_minutes > 0 else 0,
}
def preprocess_for_ml(fights_to_process, fighters_csv_path):
"""
Transforms raw fight and fighter data into a feature matrix (X) and target vector (y)
suitable for a binary classification machine learning model.
Args:
fights_to_process (list of dict): The list of fights to process.
fighters_csv_path (str): Path to the CSV file with all fighter stats.
Returns:
pd.DataFrame: Feature matrix X.
pd.Series: Target vector y.
pd.DataFrame: Metadata DataFrame.
"""
if not os.path.exists(fighters_csv_path):
raise FileNotFoundError(f"Fighters data not found at '{fighters_csv_path}'.")
fighters_df = pd.read_csv(fighters_csv_path)
# 1. Prepare fighters data for merging
fighters_prepared = fighters_df.copy()
fighters_prepared['full_name'] = fighters_prepared['first_name'] + ' ' + fighters_prepared['last_name']
# Handle duplicate fighter names by keeping the first entry
fighters_prepared = fighters_prepared.drop_duplicates(subset=['full_name'], keep='first')
fighters_prepared = fighters_prepared.set_index('full_name')
for col in ['height_cm', 'reach_in', 'elo']:
if col in fighters_prepared.columns:
fighters_prepared[col] = _clean_numeric_column(fighters_prepared[col])
# 2. Pre-calculate fighter histories to speed up lookups
# And convert date strings to datetime objects once
for fight in fights_to_process:
try:
# This will work if event_date is a string
fight['date_obj'] = datetime.strptime(fight['event_date'], '%B %d, %Y')
except TypeError:
# This will be triggered if it's already a date-like object (e.g., Timestamp)
fight['date_obj'] = fight['event_date']
fighter_histories = {}
for fighter_name in fighters_prepared.index:
history = [f for f in fights_to_process if fighter_name in (f['fighter_1'], f['fighter_2'])]
fighter_histories[fighter_name] = sorted(history, key=lambda x: x['date_obj'])
# 3. Process fights to create features and targets
feature_list = []
target_list = []
metadata_list = []
for fight in fights_to_process:
# Per the dataset's design, fighter_1 is always the winner.
f1_name, f2_name = fight['fighter_1'], fight['fighter_2']
if f1_name not in fighters_prepared.index or f2_name not in fighters_prepared.index:
continue
f1_stats, f2_stats = fighters_prepared.loc[f1_name], fighters_prepared.loc[f2_name]
if isinstance(f1_stats, pd.DataFrame): f1_stats = f1_stats.iloc[0]
if isinstance(f2_stats, pd.DataFrame): f2_stats = f2_stats.iloc[0]
# Calculate ages for both fighters
f1_age = _calculate_age(f1_stats.get('dob'), fight['event_date'])
f2_age = _calculate_age(f2_stats.get('dob'), fight['event_date'])
# Get historical stats for both fighters
f1_hist_stats = _get_fighter_history_stats(f1_name, fight['date_obj'], fighter_histories.get(f1_name, []), fighters_prepared)
f2_hist_stats = _get_fighter_history_stats(f2_name, fight['date_obj'], fighter_histories.get(f2_name, []), fighters_prepared)
# --- Create two training examples from each fight for a balanced dataset ---
# 1. The "Win" case: (fighter_1 - fighter_2)
features_win = {
# Original diffs
'elo_diff': f1_stats.get('elo', 1500) - f2_stats.get('elo', 1500),
'height_diff_cm': f1_stats.get('height_cm', 0) - f2_stats.get('height_cm', 0),
'reach_diff_in': f1_stats.get('reach_in', 0) - f2_stats.get('reach_in', 0),
'age_diff_years': (f1_age - f2_age) if f1_age and f2_age else 0,
'stance_is_different': 1 if f1_stats.get('stance') != f2_stats.get('stance') else 0,
# New historical diffs
'wins_last_5_diff': f1_hist_stats['wins_last_n'] - f2_hist_stats['wins_last_n'],
'avg_opp_elo_last_5_diff': f1_hist_stats['avg_opp_elo_last_n'] - f2_hist_stats['avg_opp_elo_last_n'],
'ko_percent_last_5_diff': f1_hist_stats['ko_percent_last_n'] - f2_hist_stats['ko_percent_last_n'],
'sig_str_landed_per_min_last_5_diff': f1_hist_stats['sig_str_landed_per_min_last_n'] - f2_hist_stats['sig_str_landed_per_min_last_n'],
# Grappling features
'takedown_accuracy_last_5_diff': f1_hist_stats['takedown_accuracy_last_n'] - f2_hist_stats['takedown_accuracy_last_n'],
'sub_attempts_per_min_last_5_diff': f1_hist_stats['sub_attempts_per_min_last_n'] - f2_hist_stats['sub_attempts_per_min_last_n'],
}
feature_list.append(features_win)
target_list.append(1) # 1 represents a win
# 2. The "Loss" case: (fighter_2 - fighter_1)
# We invert the differences for the losing case.
features_loss = {key: -value for key, value in features_win.items()}
# Stance difference is symmetric; it doesn't get inverted.
features_loss['stance_is_different'] = features_win['stance_is_different']
feature_list.append(features_loss)
target_list.append(0) # 0 represents a loss
# Add metadata for both generated samples
# The 'winner' and 'loser' are consistent with the original data structure
metadata_list.append({
'winner': f1_name, 'loser': f2_name, 'event_date': fight['event_date']
})
metadata_list.append({
'winner': f1_name, 'loser': f2_name, 'event_date': fight['event_date']
})
X = pd.DataFrame(feature_list).fillna(0)
y = pd.Series(target_list, name='winner')
metadata = pd.DataFrame(metadata_list)
print(f"Preprocessing complete. Generated {X.shape[0]} samples with {X.shape[1]} features.")
return X, y, metadata
if __name__ == '__main__':
from .pipeline import PredictionPipeline
print("--- Running Preprocessing Example ---")
pipeline = PredictionPipeline(models=[])
try:
pipeline._load_and_split_data()
if pipeline.train_fights:
X_train, y_train, metadata_train = preprocess_for_ml(pipeline.train_fights, FIGHTERS_CSV_PATH)
print("\nTraining Data Shape:")
print("X_train:", X_train.shape)
print("y_train:", y_train.shape)
print("metadata_train:", metadata_train.shape)
print("\nLast 5 rows of X_train (showing populated historical features):")
print(X_train.tail())
print("\nTarget distribution (0=Loss, 1=Win):")
print(y_train.value_counts())
print("\nMetadata for last 5 rows:")
print(metadata_train.tail())
except FileNotFoundError as e:
print(e)
print("Please run the scraping pipeline first ('python -m src.scrape.main').")