ufc-predictor / src /scrape /scrape_fights.py
AlvaroMros's picture
Refactor imports to use absolute paths and clean up scripts
9678fdb
raw
history blame
10.1 kB
import requests
from bs4 import BeautifulSoup
import json
import time
import concurrent.futures
from ..config import EVENTS_JSON_PATH
# --- Configuration ---
# The number of parallel threads to use for scraping fight details.
# Increase this to scrape faster, but be mindful of rate limits.
MAX_WORKERS = 10
# The delay in seconds between each request to a fight's detail page.
# This is a politeness measure to avoid overwhelming the server.
REQUEST_DELAY = 0.1
# --- End Configuration ---
BASE_URL = "http://ufcstats.com/statistics/events/completed?page=all"
def get_soup(url):
response = requests.get(url)
response.raise_for_status() # Raise an exception for bad status codes
return BeautifulSoup(response.text, 'html.parser')
def scrape_fight_details(fight_url):
print(f" Scraping fight: {fight_url}")
soup = get_soup(fight_url)
# On upcoming fight pages, there's a specific div. If it exists, skip.
if soup.find('div', class_='b-fight-details__content-abbreviated'):
print(f" Upcoming fight, no details available: {fight_url}")
return None
tables = soup.find_all('table', class_='b-fight-details__table')
if not tables:
print(f" No stats tables found on {fight_url}")
return None
fight_details = {"fighter_1_stats": {}, "fighter_2_stats": {}}
# Helper to extract stats. The stats for both fighters are in <p> tags within a single <td>
def extract_stats_from_cell(cell, col_name):
ps = cell.find_all('p')
if len(ps) == 2:
fight_details["fighter_1_stats"][col_name] = ps[0].text.strip()
fight_details["fighter_2_stats"][col_name] = ps[1].text.strip()
# --- Totals Table ---
# The first table contains overall stats
totals_table = tables[0]
totals_tbody = totals_table.find('tbody')
if totals_tbody:
totals_row = totals_tbody.find('tr')
if totals_row:
totals_cols = totals_row.find_all('td')
stat_cols = {
1: 'kd', 2: 'sig_str', 3: 'sig_str_percent', 4: 'total_str',
5: 'td', 6: 'td_percent', 7: 'sub_att', 8: 'rev', 9: 'ctrl'
}
for index, name in stat_cols.items():
if index < len(totals_cols):
extract_stats_from_cell(totals_cols[index], name)
# --- Significant Strikes Table ---
# The second table contains significant strike details
if len(tables) > 1:
sig_strikes_table = tables[1]
sig_strikes_tbody = sig_strikes_table.find('tbody')
if sig_strikes_tbody:
sig_strikes_row = sig_strikes_tbody.find('tr')
if sig_strikes_row:
sig_strikes_cols = sig_strikes_row.find_all('td')
stat_cols = {
2: 'sig_str_head', 3: 'sig_str_body', 4: 'sig_str_leg',
5: 'sig_str_distance', 6: 'sig_str_clinch', 7: 'sig_str_ground'
}
for index, name in stat_cols.items():
if index < len(sig_strikes_cols):
extract_stats_from_cell(sig_strikes_cols[index], name)
return fight_details
def fetch_fight_details_worker(fight_url):
"""
Worker function for the thread pool. Scrapes details for a single fight
and applies a delay to be polite to the server.
"""
try:
details = scrape_fight_details(fight_url)
time.sleep(REQUEST_DELAY)
return details
except Exception as e:
print(f" Could not scrape fight details for {fight_url}: {e}")
time.sleep(REQUEST_DELAY) # Also sleep on failure to be safe
return None
def scrape_event_details(event_url):
print(f"Scraping event: {event_url}")
soup = get_soup(event_url)
event_details = {}
# Extract event name
event_details['name'] = soup.find('h2', class_='b-content__title').text.strip()
# Extract event date and location
info_list = soup.find('ul', class_='b-list__box-list')
list_items = info_list.find_all('li', class_='b-list__box-list-item')
event_details['date'] = list_items[0].text.split(':')[1].strip()
event_details['location'] = list_items[1].text.split(':')[1].strip()
# Step 1: Gather base info and URLs for all fights on the event page.
fights_to_process = []
fight_table = soup.find('table', class_='b-fight-details__table')
if fight_table:
rows = fight_table.find('tbody').find_all('tr', class_='b-fight-details__table-row')
for row in rows:
cols = row.find_all('td', class_='b-fight-details__table-col')
fighter1 = cols[1].find_all('p')[0].text.strip()
fighter2 = cols[1].find_all('p')[1].text.strip()
# Determine the winner from the W/L column based on the example provided.
winner = None
result_ps = cols[0].find_all('p')
# This logic handles the structure seen in the example file.
if len(result_ps) == 1:
result_text = result_ps[0].text.strip().lower()
if 'win' in result_text:
# When one 'win' is present, it corresponds to the first fighter listed.
winner = fighter1
elif 'draw' in result_text:
winner = "Draw"
elif 'nc' in result_text:
winner = "NC"
# This is a defensive case in case the structure has two <p> tags.
elif len(result_ps) == 2:
if 'win' in result_ps[0].text.strip().lower():
winner = fighter1
elif 'win' in result_ps[1].text.strip().lower():
winner = fighter2
elif 'draw' in result_ps[0].text.strip().lower():
winner = "Draw"
elif 'nc' in result_ps[0].text.strip().lower():
winner = "NC"
fight = {
'fighter_1': fighter1,
'fighter_2': fighter2,
'winner': winner,
'weight_class': cols[6].text.strip(),
'method': ' '.join(cols[7].stripped_strings),
'round': cols[8].text.strip(),
'time': cols[9].text.strip(),
'url': row['data-link']
}
fights_to_process.append(fight)
# Step 2: Scrape the details for all fights in parallel.
fight_urls = [fight['url'] for fight in fights_to_process]
completed_fights = []
if fight_urls:
with concurrent.futures.ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor:
# The map function maintains the order of results.
fight_details_list = executor.map(fetch_fight_details_worker, fight_urls)
for i, details in enumerate(fight_details_list):
fight_data = fights_to_process[i]
del fight_data['url'] # Clean up the temporary URL
fight_data['details'] = details if details else None
completed_fights.append(fight_data)
event_details['fights'] = completed_fights
return event_details
def scrape_all_events(json_path):
soup = get_soup(BASE_URL)
events = []
table = soup.find('table', class_='b-statistics__table-events')
if not table:
print("Could not find events table on the page.")
return []
event_rows = [row for row in table.find_all('tr', class_='b-statistics__table-row') if row.find('td')]
total_events = len(event_rows)
print(f"Found {total_events} events to scrape.")
for i, row in enumerate(event_rows):
event_link_tag = row.find('a', class_='b-link b-link_style_black')
if not event_link_tag or not event_link_tag.has_attr('href'):
continue
event_url = event_link_tag['href']
try:
event_data = scrape_event_details(event_url)
if event_data:
events.append(event_data)
print(f"Progress: {i+1}/{total_events} events scraped.")
if (i + 1) % 10 == 0:
print(f"--- Saving progress: {i + 1} of {total_events} events saved. ---")
with open(json_path, 'w') as f:
json.dump(events, f, indent=4)
except Exception as e:
print(f"Could not process event {event_url}. Error: {e}")
return events
def scrape_latest_events(json_path, num_events=5):
"""
Scrapes only the latest N events from UFC stats.
This is useful for incremental updates to avoid re-scraping all data.
Args:
json_path (str): Path to save the latest events JSON file
num_events (int): Number of latest events to scrape (default: 5)
Returns:
list: List of scraped event data
"""
soup = get_soup(BASE_URL)
events = []
table = soup.find('table', class_='b-statistics__table-events')
if not table:
print("Could not find events table on the page.")
return []
event_rows = [row for row in table.find_all('tr', class_='b-statistics__table-row') if row.find('td')]
# Limit to the latest N events (events are ordered chronologically with most recent first)
latest_event_rows = event_rows[:num_events]
total_events = len(latest_event_rows)
print(f"Found {len(event_rows)} total events. Scraping latest {total_events} events.")
for i, row in enumerate(latest_event_rows):
event_link_tag = row.find('a', class_='b-link b-link_style_black')
if not event_link_tag or not event_link_tag.has_attr('href'):
continue
event_url = event_link_tag['href']
try:
event_data = scrape_event_details(event_url)
if event_data:
events.append(event_data)
print(f"Progress: {i+1}/{total_events} latest events scraped.")
except Exception as e:
print(f"Could not process event {event_url}. Error: {e}")
return events