File size: 16,582 Bytes
4216565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7e7bdd
b659d00
79954c9
fff24d8
4216565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79954c9
 
 
4216565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fff24d8
4216565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1cfe61
 
fff24d8
4216565
b1cfe61
4216565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14931d2
52de347
 
 
 
 
 
45b0807
 
 
 
52de347
 
4216565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
291441b
4216565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2dcd74
 
 
 
7f3cd37
b2dcd74
 
 
 
 
 
 
 
 
4216565
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel, HttpUrl
from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation
from PIL import Image, ImageEnhance, ImageFilter
import torch.nn as nn
import torch
import cv2
import numpy as np
import os
import requests
import io
from datetime import datetime
from scipy import ndimage
import json
import tempfile
import shutil
from typing import List, Dict, Optional
import uuid
import asyncio
from concurrent.futures import ThreadPoolExecutor
import logging
import cloudinary
import cloudinary.uploader
from cloudinary.utils import cloudinary_url
import os
from dotenv import load_dotenv


# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = FastAPI(title="Fashion Segmentation API", version="1.0.0")

# Request/Response models
class SegmentationRequest(BaseModel):
    image_url: HttpUrl
    settings: Optional[Dict] = {
        "padding": 15,
        "background": "white",
        "quality": "high",
        "outline": "grey_2px"
    }
    
image_url="https://res.cloudinary.com/dyvuvklpk/image/upload/v1751009512/MEN-Denim-id_00000089-46_7_additional_ow2h0l.png"
#print(hi)

class SegmentInfo(BaseModel):
    class_id: int
    class_name: str
    filename: str
    category: str
    pixel_count: int
    coverage_percent: float
    cloudinary_url: str
    public_id: str

class SegmentationResponse(BaseModel):
    success: bool
    processing_time: float
    total_segments: int
    segments: List[SegmentInfo]
    metadata: Dict

# Global model storage
model_cache = {}
executor = ThreadPoolExecutor(max_workers=4)

# Constants
SEGFORMER_LABELS = {
    0: "Background", 1: "Hat", 2: "Hair", 3: "Sunglasses", 4: "Upper-clothes",
    5: "Skirt", 6: "Pants", 7: "Dress", 8: "Belt", 9: "Left-shoe", 10: "Right-shoe",
    11: "Face", 12: "Left-leg", 13: "Right-leg", 14: "Left-arm", 15: "Right-arm",
    16: "Bag", 17: "Scarf"
}

CLOTHING_ITEMS = {4, 5, 6, 7, 8, 17}  # Upper-clothes, Skirt, Pants, Dress, Belt, Scarf
ACCESSORIES = {1, 3, 9, 10, 16}  # Hat, Sunglasses, Left-shoe, Right-shoe, Bag
BODY_PARTS = {2, 11, 12, 13, 14, 15}  # Hair, Face, Left-leg, Right-leg, Left-arm, Right-arm


load_dotenv()

# Cloudinary Configuration
cloudinary.config(
    cloud_name=os.getenv("CLOUDINARY_CLOUD_NAME"),
    api_key=os.getenv("CLOUDINARY_API_KEY"),
    api_secret=os.getenv("CLOUDINARY_API_SECRET"),
    secure=True
)

async def load_model():
    """Load the segmentation model asynchronously"""
    if "model" not in model_cache:
        logger.info("Loading SegFormer model...")
        try:
            processor = SegformerImageProcessor.from_pretrained("mattmdjaga/segformer_b2_clothes")
            model = AutoModelForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b2_clothes")
            model_cache["processor"] = processor
            model_cache["model"] = model
            logger.info("Model loaded successfully!")
        except Exception as e:
            logger.error(f"Model loading failed: {e}")
            raise HTTPException(status_code=500, detail=f"Model loading failed: {e}")
    
    return model_cache["processor"], model_cache["model"]

def download_image(url: str) -> Image.Image:
    """Download image from URL"""
    try:
        response = requests.get(str(url), timeout=30)
        response.raise_for_status()
        
        image = Image.open(io.BytesIO(response.content))
        if image.mode != 'RGB':
            image = image.convert('RGB')
        
        
        logger.info("Image downloaaded succcessfully:",url)
        
        return image
    except Exception as e:
        raise HTTPException(status_code=400, detail=f"Failed to download image: {e}")

def enhance_image_quality(image):
    """Enhance image quality for high-quality output"""
    if isinstance(image, np.ndarray):
        if len(image.shape) == 3 and image.shape[2] == 3:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        pil_image = Image.fromarray(image)
    else:
        pil_image = image

    # High quality enhancement
    pil_image = pil_image.filter(ImageFilter.UnsharpMask(radius=2, percent=150, threshold=3))
    enhancer = ImageEnhance.Sharpness(pil_image)
    pil_image = enhancer.enhance(1.3)
    enhancer = ImageEnhance.Contrast(pil_image)
    pil_image = enhancer.enhance(1.15)
    enhancer = ImageEnhance.Color(pil_image)
    pil_image = enhancer.enhance(1.1)

    return cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)

def get_category_folder(class_id):
    """Get appropriate folder for class"""
    if class_id in CLOTHING_ITEMS:
        return "clothing"
    """elif class_id in ACCESSORIES:
        return "accessories"
    
    else:
        pass # default"""

def upload_to_cloudinary(file_path: str, public_id: str, folder: str = "fashion_segments") -> Dict:
    """Upload file to Cloudinary and return response with URLs"""
    try:
        # Upload to Cloudinary
        upload_result = cloudinary.uploader.upload(
            file_path,
            public_id=f"{folder}/{public_id}",
            folder=folder,
            resource_type="image",
            format="png",
            quality="auto:best",
            fetch_format="auto"
        )
        
        # Generate optimized URL
        optimized_url, _ = cloudinary_url(
            upload_result['public_id'],
            format="png",
            quality="auto:best",
            fetch_format="auto"
        )
        
        return {
            'url': upload_result.get('secure_url', upload_result.get('url')),
            'optimized_url': optimized_url,
            'public_id': upload_result['public_id'],
            'version': upload_result.get('version'),
            'format': upload_result.get('format'),
            'width': upload_result.get('width'),
            'height': upload_result.get('height'),
            'bytes': upload_result.get('bytes')
        }
        
    except Exception as e:
        logger.error(f"Cloudinary upload failed: {e}")
        raise HTTPException(status_code=500, detail=f"Upload failed: {e}")

def process_segmentation(image: Image.Image, processor, model, settings: Dict) -> tuple:
    """Process image segmentation"""
    # Process with model
    inputs = processor(images=image, return_tensors="pt")
    outputs = model(**inputs)
    logits = outputs.logits.cpu()

    # Resize to original image size
    upsampled_logits = nn.functional.interpolate(
        logits,
        size=image.size[::-1],  # height, width
        mode="bilinear",
        align_corners=False,
    )

    pred_seg = upsampled_logits.argmax(dim=1)[0]

    # Extract bounding boxes
    unique_classes = torch.unique(pred_seg)
    segment_data = {}
    total_pixels = pred_seg.numel()

    for class_id in unique_classes:
        coords = torch.where(pred_seg == class_id)
        y_coords = coords[0].numpy()
        x_coords = coords[1].numpy()

        min_x, max_x = int(x_coords.min()), int(x_coords.max())
        min_y, max_y = int(y_coords.min()), int(y_coords.max())
        pixel_count = len(x_coords)
        coverage = (pixel_count / total_pixels) * 100

        segment_data[int(class_id)] = {
            'bbox': (min_x, min_y, max_x, max_y),
            'pixel_count': pixel_count,
            'coverage_percent': coverage
        }

    return pred_seg, segment_data

def extract_segments(image: Image.Image, pred_seg, segment_data: Dict, settings: Dict) -> List[Dict]:
    """Extract individual segments and upload to Cloudinary"""
    image_np = np.array(image)
    image_bgr = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
    label_map = pred_seg.numpy().astype(np.uint8)
    h, w = label_map.shape

    extracted_segments = []
    padding = settings.get("padding", 15)
    
    # Create temporary directory for processing
    temp_dir = tempfile.mkdtemp()
    session_id = str(uuid.uuid4())[:8]  # Shorter session ID
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")

    try:
        for class_id, info in segment_data.items():
            if class_id == 0:  # Skip background
                continue

            x1, y1, x2, y2 = info['bbox']

            # Apply padding
            x1 = max(0, x1 - padding)
            y1 = max(0, y1 - padding)
            x2 = min(w - 1, x2 + padding)
            y2 = min(h - 1, y2 + padding)

            # Enhanced mask processing
            mask = (label_map == class_id).astype(np.uint8)
            mask_filled = ndimage.binary_fill_holes(mask).astype(np.uint8)

            # Adaptive kernel size
            segment_area = np.sum(mask_filled)
            kernel_size = max(3, min(7, int(np.sqrt(segment_area) / 100)))
            kernel = np.ones((kernel_size, kernel_size), np.uint8)

            mask_cleaned = cv2.morphologyEx(mask_filled, cv2.MORPH_CLOSE, kernel, iterations=2)
            mask_cleaned = cv2.morphologyEx(mask_cleaned, cv2.MORPH_OPEN, kernel, iterations=1)

            # Smooth edges
            mask_smooth = cv2.GaussianBlur(mask_cleaned.astype(np.float32), (3, 3), 1.0)

            # Crop
            cropped_mask_smooth = mask_smooth[y1:y2+1, x1:x2+1]
            cropped_image = image_bgr[y1:y2+1, x1:x2+1]

          
           # Create white background with grey outline
            background = np.full(cropped_image.shape, 248, dtype=np.uint8)
            mask_uint8 = (cropped_mask_smooth * 255).astype(np.uint8)
            contours, _ = cv2.findContours(mask_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

            mask_3d = np.stack([cropped_mask_smooth] * 3, axis=2)
            # Composite image - just object + white background (no grey outline)
            final_image = (cropped_image * mask_3d + 
              background * (1 - mask_3d)).astype(np.uint8)
          



            # Enhance quality
            final_image = enhance_image_quality(final_image)

            # Save temporarily
            class_name = SEGFORMER_LABELS.get(class_id, f"Class_{class_id}")
            category_folder = get_category_folder(class_id)
            filename = f"{class_id:02d}_{class_name.replace(' ', '_')}_{info['pixel_count']}px.png"
            
            temp_filepath = os.path.join(temp_dir, filename)
            cv2.imwrite(temp_filepath, final_image)

            # Create public_id for Cloudinary
            public_id = f"{timestamp}_{session_id}_{category_folder}_{class_id:02d}_{class_name.replace(' ', '_')}"
            
            # Upload to Cloudinary
            cloudinary_result = upload_to_cloudinary(
                temp_filepath, 
                public_id, 
                folder=f"fashion_segments/{category_folder}"
            )

            extracted_segments.append({
                'class_id': class_id,
                'class_name': class_name,
                'filename': filename,
                'category': category_folder,
                'pixel_count': info['pixel_count'],
                'coverage_percent': info['coverage_percent'],
                'cloudinary_url': cloudinary_result['optimized_url'],
                'public_id': cloudinary_result['public_id']
            })

            logger.info(f"Extracted and uploaded: {class_name} ({info['pixel_count']:,} pixels, {info['coverage_percent']:.1f}% coverage)")

    finally:
        # Cleanup temporary directory
        shutil.rmtree(temp_dir, ignore_errors=True)

    return extracted_segments

@app.on_event("startup")
async def startup_event():
    """Load model on startup"""
    await load_model()

@app.get("/health")
async def health_check():
    return {
        "status": "healthy", 
        "model_loaded": "model" in model_cache,
        "cloudinary_configured": bool(CLOUDINARY_CONFIG["cloud_name"])
    }

@app.post("/segment", response_model=SegmentationResponse)
async def segment_fashion_items(request: SegmentationRequest):
    """
    Segment fashion items from an image URL and return Cloudinary URLs for extracted segments
    """
    start_time = datetime.now()
    
    try:
        # Load model
        processor, model = await load_model()
        
        # Download image
        logger.info(f"Downloading image from: {request.image_url}")
        image = download_image(request.image_url)
        original_size = image.size
        
        # Process segmentation in thread pool
        loop = asyncio.get_event_loop()
        pred_seg, segment_data = await loop.run_in_executor(
            executor, process_segmentation, image, processor, model, request.settings
        )
        
        # Extract segments and upload to Cloudinary
        extracted_segments = await loop.run_in_executor(
            executor, extract_segments, image, pred_seg, segment_data, request.settings
        )
        
        # Calculate processing time
        end_time = datetime.now()
        processing_time = (end_time - start_time).total_seconds()
        
        # Prepare response
        segments = [SegmentInfo(**segment) for segment in extracted_segments]
        
        metadata = {
            'processing_time': processing_time,
            'image_size': original_size,
            'total_segments': len(segments),
            'settings': request.settings,
            'timestamp': datetime.now().isoformat(),
            'storage_provider': 'cloudinary'
        }
        
        logger.info(f"Processing complete: {len(segments)} segments extracted and uploaded in {processing_time:.2f}s")
        
        return SegmentationResponse(
            success=True,
            processing_time=processing_time,
            total_segments=len(segments),
            segments=segments,
            metadata=metadata
        )
        
    except Exception as e:
        logger.error(f"Processing failed: {e}")
        return SegmentationResponse(
            success=False,
            processing_time=(datetime.now() - start_time).total_seconds(),
            total_segments=0,
            segments=[],
            metadata={"error": str(e), "storage_provider": "cloudinary"}
        )

@app.post("/segment/batch")
async def segment_multiple_images(image_urls: List[HttpUrl]):
    """
    Process multiple images in batch
    """
    results = []
    
    for url in image_urls:
        try:
            request = SegmentationRequest(image_url=url)
            result = await segment_fashion_items(request)
            results.append({"url": str(url), "result": result})
        except Exception as e:
            results.append({"url": str(url), "error": str(e)})
    
    return {"batch_results": results}

@app.delete("/segment/{public_id}")
async def delete_segment(public_id: str):
    """
    Delete a segment from Cloudinary by public_id
    """
    try:
        result = cloudinary.uploader.destroy(public_id)
        return {"success": True, "result": result}
    except Exception as e:
        logger.error(f"Failed to delete {public_id}: {e}")
        raise HTTPException(status_code=500, detail=f"Deletion failed: {e}")

@app.get("/segment/transform/{public_id}")
async def get_transformed_url(
    public_id: str, 
    width: Optional[int] = None, 
    height: Optional[int] = None,
    quality: Optional[str] = "auto",
    format: Optional[str] = "auto"
):
    """
    Get a transformed URL for a segment with specified dimensions and quality
    """
    try:
        transformations = {
            "quality": quality,
            "fetch_format": format
        }
        
        if width:
            transformations["width"] = width
        if height:
            transformations["height"] = height
            
        url, options = cloudinary_url(public_id, **transformations)
        
        return {
            "original_public_id": public_id,
            "transformed_url": url,
            "transformations": transformations
        }
    except Exception as e:
        logger.error(f"Failed to generate transformed URL: {e}")
        raise HTTPException(status_code=500, detail=f"URL generation failed: {e}")
    
@app.get("/")
async def root():
    request = {
        "image_url": "https://res.cloudinary.com/dyvuvklpk/image/upload/v1751009512/MEN-Denim-id_00000089-46_7_additional_ow2h0l.png",
        "settings": {
            "padding": 15,
            "background": "white",
            "quality": "high",
            "outline": "grey_2px"
        }
    }
    await segment_fashion_items(SegmentationRequest(**request))
    return {"message": "Successfully Finished Execution!", "version": "1.0.0"}

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)