Spaces:
Paused
Paused
| import math | |
| from collections import Counter | |
| from typing import Optional | |
| import numpy as np | |
| from core.model_manager import ModelManager | |
| from core.model_runtime.entities.model_entities import ModelType | |
| from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler | |
| from core.rag.embedding.cached_embedding import CacheEmbedding | |
| from core.rag.models.document import Document | |
| from core.rag.rerank.entity.weight import VectorSetting, Weights | |
| from core.rag.rerank.rerank_base import BaseRerankRunner | |
| class WeightRerankRunner(BaseRerankRunner): | |
| def __init__(self, tenant_id: str, weights: Weights) -> None: | |
| self.tenant_id = tenant_id | |
| self.weights = weights | |
| def run( | |
| self, | |
| query: str, | |
| documents: list[Document], | |
| score_threshold: Optional[float] = None, | |
| top_n: Optional[int] = None, | |
| user: Optional[str] = None, | |
| ) -> list[Document]: | |
| """ | |
| Run rerank model | |
| :param query: search query | |
| :param documents: documents for reranking | |
| :param score_threshold: score threshold | |
| :param top_n: top n | |
| :param user: unique user id if needed | |
| :return: | |
| """ | |
| docs = [] | |
| doc_id = [] | |
| unique_documents = [] | |
| for document in documents: | |
| if document.metadata["doc_id"] not in doc_id: | |
| doc_id.append(document.metadata["doc_id"]) | |
| docs.append(document.page_content) | |
| unique_documents.append(document) | |
| documents = unique_documents | |
| rerank_documents = [] | |
| query_scores = self._calculate_keyword_score(query, documents) | |
| query_vector_scores = self._calculate_cosine(self.tenant_id, query, documents, self.weights.vector_setting) | |
| for document, query_score, query_vector_score in zip(documents, query_scores, query_vector_scores): | |
| # format document | |
| score = ( | |
| self.weights.vector_setting.vector_weight * query_vector_score | |
| + self.weights.keyword_setting.keyword_weight * query_score | |
| ) | |
| if score_threshold and score < score_threshold: | |
| continue | |
| document.metadata["score"] = score | |
| rerank_documents.append(document) | |
| rerank_documents = sorted(rerank_documents, key=lambda x: x.metadata["score"], reverse=True) | |
| return rerank_documents[:top_n] if top_n else rerank_documents | |
| def _calculate_keyword_score(self, query: str, documents: list[Document]) -> list[float]: | |
| """ | |
| Calculate BM25 scores | |
| :param query: search query | |
| :param documents: documents for reranking | |
| :return: | |
| """ | |
| keyword_table_handler = JiebaKeywordTableHandler() | |
| query_keywords = keyword_table_handler.extract_keywords(query, None) | |
| documents_keywords = [] | |
| for document in documents: | |
| # get the document keywords | |
| document_keywords = keyword_table_handler.extract_keywords(document.page_content, None) | |
| document.metadata["keywords"] = document_keywords | |
| documents_keywords.append(document_keywords) | |
| # Counter query keywords(TF) | |
| query_keyword_counts = Counter(query_keywords) | |
| # total documents | |
| total_documents = len(documents) | |
| # calculate all documents' keywords IDF | |
| all_keywords = set() | |
| for document_keywords in documents_keywords: | |
| all_keywords.update(document_keywords) | |
| keyword_idf = {} | |
| for keyword in all_keywords: | |
| # calculate include query keywords' documents | |
| doc_count_containing_keyword = sum(1 for doc_keywords in documents_keywords if keyword in doc_keywords) | |
| # IDF | |
| keyword_idf[keyword] = math.log((1 + total_documents) / (1 + doc_count_containing_keyword)) + 1 | |
| query_tfidf = {} | |
| for keyword, count in query_keyword_counts.items(): | |
| tf = count | |
| idf = keyword_idf.get(keyword, 0) | |
| query_tfidf[keyword] = tf * idf | |
| # calculate all documents' TF-IDF | |
| documents_tfidf = [] | |
| for document_keywords in documents_keywords: | |
| document_keyword_counts = Counter(document_keywords) | |
| document_tfidf = {} | |
| for keyword, count in document_keyword_counts.items(): | |
| tf = count | |
| idf = keyword_idf.get(keyword, 0) | |
| document_tfidf[keyword] = tf * idf | |
| documents_tfidf.append(document_tfidf) | |
| def cosine_similarity(vec1, vec2): | |
| intersection = set(vec1.keys()) & set(vec2.keys()) | |
| numerator = sum(vec1[x] * vec2[x] for x in intersection) | |
| sum1 = sum(vec1[x] ** 2 for x in vec1) | |
| sum2 = sum(vec2[x] ** 2 for x in vec2) | |
| denominator = math.sqrt(sum1) * math.sqrt(sum2) | |
| if not denominator: | |
| return 0.0 | |
| else: | |
| return float(numerator) / denominator | |
| similarities = [] | |
| for document_tfidf in documents_tfidf: | |
| similarity = cosine_similarity(query_tfidf, document_tfidf) | |
| similarities.append(similarity) | |
| # for idx, similarity in enumerate(similarities): | |
| # print(f"Document {idx + 1} similarity: {similarity}") | |
| return similarities | |
| def _calculate_cosine( | |
| self, tenant_id: str, query: str, documents: list[Document], vector_setting: VectorSetting | |
| ) -> list[float]: | |
| """ | |
| Calculate Cosine scores | |
| :param query: search query | |
| :param documents: documents for reranking | |
| :return: | |
| """ | |
| query_vector_scores = [] | |
| model_manager = ModelManager() | |
| embedding_model = model_manager.get_model_instance( | |
| tenant_id=tenant_id, | |
| provider=vector_setting.embedding_provider_name, | |
| model_type=ModelType.TEXT_EMBEDDING, | |
| model=vector_setting.embedding_model_name, | |
| ) | |
| cache_embedding = CacheEmbedding(embedding_model) | |
| query_vector = cache_embedding.embed_query(query) | |
| for document in documents: | |
| # calculate cosine similarity | |
| if "score" in document.metadata: | |
| query_vector_scores.append(document.metadata["score"]) | |
| else: | |
| # transform to NumPy | |
| vec1 = np.array(query_vector) | |
| vec2 = np.array(document.vector) | |
| # calculate dot product | |
| dot_product = np.dot(vec1, vec2) | |
| # calculate norm | |
| norm_vec1 = np.linalg.norm(vec1) | |
| norm_vec2 = np.linalg.norm(vec2) | |
| # calculate cosine similarity | |
| cosine_sim = dot_product / (norm_vec1 * norm_vec2) | |
| query_vector_scores.append(cosine_sim) | |
| return query_vector_scores | |