Spaces:
Paused
Paused
import os | |
from collections.abc import Generator | |
import pytest | |
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta | |
from core.model_runtime.entities.message_entities import ( | |
AssistantPromptMessage, | |
PromptMessageTool, | |
SystemPromptMessage, | |
UserPromptMessage, | |
) | |
from core.model_runtime.entities.model_entities import AIModelEntity | |
from core.model_runtime.errors.validate import CredentialsValidateFailedError | |
from core.model_runtime.model_providers.chatglm.llm.llm import ChatGLMLargeLanguageModel | |
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock | |
def test_predefined_models(): | |
model = ChatGLMLargeLanguageModel() | |
model_schemas = model.predefined_models() | |
assert len(model_schemas) >= 1 | |
assert isinstance(model_schemas[0], AIModelEntity) | |
def test_validate_credentials_for_chat_model(setup_openai_mock): | |
model = ChatGLMLargeLanguageModel() | |
with pytest.raises(CredentialsValidateFailedError): | |
model.validate_credentials(model="chatglm2-6b", credentials={"api_base": "invalid_key"}) | |
model.validate_credentials(model="chatglm2-6b", credentials={"api_base": os.environ.get("CHATGLM_API_BASE")}) | |
def test_invoke_model(setup_openai_mock): | |
model = ChatGLMLargeLanguageModel() | |
response = model.invoke( | |
model="chatglm2-6b", | |
credentials={"api_base": os.environ.get("CHATGLM_API_BASE")}, | |
prompt_messages=[ | |
SystemPromptMessage( | |
content="You are a helpful AI assistant.", | |
), | |
UserPromptMessage(content="Hello World!"), | |
], | |
model_parameters={ | |
"temperature": 0.7, | |
"top_p": 1.0, | |
}, | |
stop=["you"], | |
user="abc-123", | |
stream=False, | |
) | |
assert isinstance(response, LLMResult) | |
assert len(response.message.content) > 0 | |
assert response.usage.total_tokens > 0 | |
def test_invoke_stream_model(setup_openai_mock): | |
model = ChatGLMLargeLanguageModel() | |
response = model.invoke( | |
model="chatglm2-6b", | |
credentials={"api_base": os.environ.get("CHATGLM_API_BASE")}, | |
prompt_messages=[ | |
SystemPromptMessage( | |
content="You are a helpful AI assistant.", | |
), | |
UserPromptMessage(content="Hello World!"), | |
], | |
model_parameters={ | |
"temperature": 0.7, | |
"top_p": 1.0, | |
}, | |
stop=["you"], | |
stream=True, | |
user="abc-123", | |
) | |
assert isinstance(response, Generator) | |
for chunk in response: | |
assert isinstance(chunk, LLMResultChunk) | |
assert isinstance(chunk.delta, LLMResultChunkDelta) | |
assert isinstance(chunk.delta.message, AssistantPromptMessage) | |
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True | |
def test_invoke_stream_model_with_functions(setup_openai_mock): | |
model = ChatGLMLargeLanguageModel() | |
response = model.invoke( | |
model="chatglm3-6b", | |
credentials={"api_base": os.environ.get("CHATGLM_API_BASE")}, | |
prompt_messages=[ | |
SystemPromptMessage( | |
content="你是一个天气机器人,你不知道今天的天气怎么样,你需要通过调用一个函数来获取天气信息。" | |
), | |
UserPromptMessage(content="波士顿天气如何?"), | |
], | |
model_parameters={ | |
"temperature": 0, | |
"top_p": 1.0, | |
}, | |
stop=["you"], | |
user="abc-123", | |
stream=True, | |
tools=[ | |
PromptMessageTool( | |
name="get_current_weather", | |
description="Get the current weather in a given location", | |
parameters={ | |
"type": "object", | |
"properties": { | |
"location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"}, | |
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, | |
}, | |
"required": ["location"], | |
}, | |
) | |
], | |
) | |
assert isinstance(response, Generator) | |
call: LLMResultChunk = None | |
chunks = [] | |
for chunk in response: | |
chunks.append(chunk) | |
assert isinstance(chunk, LLMResultChunk) | |
assert isinstance(chunk.delta, LLMResultChunkDelta) | |
assert isinstance(chunk.delta.message, AssistantPromptMessage) | |
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True | |
if chunk.delta.message.tool_calls and len(chunk.delta.message.tool_calls) > 0: | |
call = chunk | |
break | |
assert call is not None | |
assert call.delta.message.tool_calls[0].function.name == "get_current_weather" | |
def test_invoke_model_with_functions(setup_openai_mock): | |
model = ChatGLMLargeLanguageModel() | |
response = model.invoke( | |
model="chatglm3-6b", | |
credentials={"api_base": os.environ.get("CHATGLM_API_BASE")}, | |
prompt_messages=[UserPromptMessage(content="What is the weather like in San Francisco?")], | |
model_parameters={ | |
"temperature": 0.7, | |
"top_p": 1.0, | |
}, | |
stop=["you"], | |
user="abc-123", | |
stream=False, | |
tools=[ | |
PromptMessageTool( | |
name="get_current_weather", | |
description="Get the current weather in a given location", | |
parameters={ | |
"type": "object", | |
"properties": { | |
"location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"}, | |
"unit": {"type": "string", "enum": ["c", "f"]}, | |
}, | |
"required": ["location"], | |
}, | |
) | |
], | |
) | |
assert isinstance(response, LLMResult) | |
assert len(response.message.content) > 0 | |
assert response.usage.total_tokens > 0 | |
assert response.message.tool_calls[0].function.name == "get_current_weather" | |
def test_get_num_tokens(): | |
model = ChatGLMLargeLanguageModel() | |
num_tokens = model.get_num_tokens( | |
model="chatglm2-6b", | |
credentials={"api_base": os.environ.get("CHATGLM_API_BASE")}, | |
prompt_messages=[ | |
SystemPromptMessage( | |
content="You are a helpful AI assistant.", | |
), | |
UserPromptMessage(content="Hello World!"), | |
], | |
tools=[ | |
PromptMessageTool( | |
name="get_current_weather", | |
description="Get the current weather in a given location", | |
parameters={ | |
"type": "object", | |
"properties": { | |
"location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"}, | |
"unit": {"type": "string", "enum": ["c", "f"]}, | |
}, | |
"required": ["location"], | |
}, | |
) | |
], | |
) | |
assert isinstance(num_tokens, int) | |
assert num_tokens == 77 | |
num_tokens = model.get_num_tokens( | |
model="chatglm2-6b", | |
credentials={"api_base": os.environ.get("CHATGLM_API_BASE")}, | |
prompt_messages=[ | |
SystemPromptMessage( | |
content="You are a helpful AI assistant.", | |
), | |
UserPromptMessage(content="Hello World!"), | |
], | |
) | |
assert isinstance(num_tokens, int) | |
assert num_tokens == 21 | |