Spaces:
Paused
Paused
import os | |
from collections.abc import Generator | |
import pytest | |
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta | |
from core.model_runtime.entities.message_entities import AssistantPromptMessage, SystemPromptMessage, UserPromptMessage | |
from core.model_runtime.errors.validate import CredentialsValidateFailedError | |
from core.model_runtime.model_providers.bedrock.llm.llm import BedrockLargeLanguageModel | |
def test_validate_credentials(): | |
model = BedrockLargeLanguageModel() | |
with pytest.raises(CredentialsValidateFailedError): | |
model.validate_credentials(model="meta.llama2-13b-chat-v1", credentials={"anthropic_api_key": "invalid_key"}) | |
model.validate_credentials( | |
model="meta.llama2-13b-chat-v1", | |
credentials={ | |
"aws_region": os.getenv("AWS_REGION"), | |
"aws_access_key": os.getenv("AWS_ACCESS_KEY"), | |
"aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY"), | |
}, | |
) | |
def test_invoke_model(): | |
model = BedrockLargeLanguageModel() | |
response = model.invoke( | |
model="meta.llama2-13b-chat-v1", | |
credentials={ | |
"aws_region": os.getenv("AWS_REGION"), | |
"aws_access_key": os.getenv("AWS_ACCESS_KEY"), | |
"aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY"), | |
}, | |
prompt_messages=[ | |
SystemPromptMessage( | |
content="You are a helpful AI assistant.", | |
), | |
UserPromptMessage(content="Hello World!"), | |
], | |
model_parameters={"temperature": 0.0, "top_p": 1.0, "max_tokens_to_sample": 10}, | |
stop=["How"], | |
stream=False, | |
user="abc-123", | |
) | |
assert isinstance(response, LLMResult) | |
assert len(response.message.content) > 0 | |
def test_invoke_stream_model(): | |
model = BedrockLargeLanguageModel() | |
response = model.invoke( | |
model="meta.llama2-13b-chat-v1", | |
credentials={ | |
"aws_region": os.getenv("AWS_REGION"), | |
"aws_access_key": os.getenv("AWS_ACCESS_KEY"), | |
"aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY"), | |
}, | |
prompt_messages=[ | |
SystemPromptMessage( | |
content="You are a helpful AI assistant.", | |
), | |
UserPromptMessage(content="Hello World!"), | |
], | |
model_parameters={"temperature": 0.0, "max_tokens_to_sample": 100}, | |
stream=True, | |
user="abc-123", | |
) | |
assert isinstance(response, Generator) | |
for chunk in response: | |
print(chunk) | |
assert isinstance(chunk, LLMResultChunk) | |
assert isinstance(chunk.delta, LLMResultChunkDelta) | |
assert isinstance(chunk.delta.message, AssistantPromptMessage) | |
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True | |
def test_get_num_tokens(): | |
model = BedrockLargeLanguageModel() | |
num_tokens = model.get_num_tokens( | |
model="meta.llama2-13b-chat-v1", | |
credentials={ | |
"aws_region": os.getenv("AWS_REGION"), | |
"aws_access_key": os.getenv("AWS_ACCESS_KEY"), | |
"aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY"), | |
}, | |
messages=[ | |
SystemPromptMessage( | |
content="You are a helpful AI assistant.", | |
), | |
UserPromptMessage(content="Hello World!"), | |
], | |
) | |
assert num_tokens == 18 | |