File size: 2,329 Bytes
01a8607
0899835
 
 
 
 
 
d117490
0899835
01a8607
0899835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9f18eb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
title: Medical Analysis System
emoji: πŸ€–
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 5.20.1
app_file: run.py
pinned: false
---

# MediSync: Multi-Modal Medical Analysis System

MediSync is an AI-powered healthcare solution that combines X-ray image analysis with patient report text processing to provide comprehensive medical insights.

## Features

- **X-ray Image Analysis**: Detects abnormalities in chest X-rays using pre-trained vision models from Hugging Face.
- **Medical Report Processing**: Extracts key information from patient reports using NLP models.
- **Multi-modal Integration**: Combines insights from both image and text data for more accurate diagnosis suggestions.
- **User-friendly Interface**: Simple web interface for uploading images and reports.

## Project Structure

```
mediSync/
β”œβ”€β”€ app.py                    # Main application with Gradio interface
β”œβ”€β”€ models/
β”‚   β”œβ”€β”€ image_analyzer.py     # X-ray image analysis module
β”‚   β”œβ”€β”€ text_analyzer.py      # Medical report text analysis module
β”‚   └── multimodal_fusion.py  # Fusion of image and text insights
β”œβ”€β”€ utils/
β”‚   β”œβ”€β”€ preprocessing.py      # Data preprocessing utilities
β”‚   └── visualization.py      # Result visualization utilities
β”œβ”€β”€ data/
β”‚   └── sample/               # Sample data for testing
└── tests/                    # Unit tests
```

## Setup Instructions

1. Clone this repository:
```bash
git clone [repository-url]
cd MediSync
```

2. Install dependencies:
```bash
pip install -r requirements.txt
```

3. Run the application:
```bash
python app.py
```

4. Access the web interface at `http://localhost:7860`

## Models Used

- **X-ray Analysis**: facebook/deit-base-patch16-224-medical-cxr
- **Medical Text Analysis**: medicalai/ClinicalBERT
- **Additional Support Models**: Medical question answering and entity recognition models

## Use Cases

- Preliminary screening of chest X-rays
- Cross-validation of radiologist reports
- Educational tool for medical students
- Research tool for studying correlation between visual findings and written reports

## Note

This system is designed as a support tool and should not replace professional medical diagnosis. Always consult with healthcare professionals for medical decisions.