File size: 10,537 Bytes
fde38c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6f8bcb
 
 
fde38c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0796bd
fde38c3
 
 
 
 
 
 
 
 
 
 
b6f8bcb
 
fde38c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6f8bcb
fde38c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6f8bcb
 
 
 
 
e068114
b6f8bcb
89a3ce8
fde38c3
 
 
 
 
 
 
 
e068114
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import re
import json
import torch
import numpy as np
import logging
from typing import Dict, List, Tuple, Optional
from tqdm import tqdm
from pydantic import BaseModel
from transformers import (
    AutoTokenizer,
    AutoModelForSeq2SeqLM,
    AutoModelForQuestionAnswering,
    pipeline,
    LogitsProcessor,
    LogitsProcessorList,
    PreTrainedModel,
    PreTrainedTokenizer
)
from sentence_transformers import SentenceTransformer, CrossEncoder
from sklearn.feature_extraction.text import TfidfVectorizer
from rank_bm25 import BM25Okapi
import PyPDF2
from sklearn.cluster import KMeans
import spacy
import subprocess
import gradio as gr

logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s [%(levelname)s] %(message)s"
)

class ConfidenceCalibrator(LogitsProcessor):
    def __init__(self, calibration_factor: float = 0.9):
        self.calibration_factor = calibration_factor

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        return scores / self.calibration_factor

class DocumentResult(BaseModel):
    content: str
    confidence: float
    source_page: int
    supporting_evidence: List[str]

class OptimalModelSelector:
    def __init__(self):
        self.qa_models = {
            "deberta-v3": ("deepset/deberta-v3-large-squad2", 0.87)
        }
        self.summarization_models = {
            "bart": ("facebook/bart-large-cnn", 0.85)
        }
        self.current_models = {}

    def get_best_model(self, task_type: str) -> Tuple[PreTrainedModel, PreTrainedTokenizer, float]:
        model_map = self.qa_models if "qa" in task_type else self.summarization_models
        best_model_name, best_score = max(model_map.items(), key=lambda x: x[1][1])
        if best_model_name not in self.current_models:
            tokenizer = AutoTokenizer.from_pretrained(model_map[best_model_name][0])
            model = (AutoModelForQuestionAnswering if "qa" in task_type
                     else AutoModelForSeq2SeqLM).from_pretrained(model_map[best_model_name][0])
            model = model.eval().half().to('cuda' if torch.cuda.is_available() else 'cpu')
            self.current_models[best_model_name] = (model, tokenizer)
        return *self.current_models[best_model_name], best_score

class PDFAugmentedRetriever:
    def __init__(self, document_texts: List[str]):
        self.documents = [(i, text) for i, text in enumerate(document_texts)]
        self.bm25 = BM25Okapi([text.split() for _, text in self.documents])
        self.encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
        self.tfidf = TfidfVectorizer(stop_words='english').fit([text for _, text in self.documents])

    def retrieve(self, query: str, top_k: int = 5) -> List[Tuple[int, str, float]]:
        bm25_scores = self.bm25.get_scores(query.split())
        semantic_scores = self.encoder.predict([(query, doc) for _, doc in self.documents])
        combined_scores = 0.4 * bm25_scores + 0.6 * np.array(semantic_scores)
        top_indices = np.argsort(combined_scores)[-top_k:][::-1]
        return [(self.documents[i][0], self.documents[i][1], float(combined_scores[i]))
                for i in top_indices]

class DetailedExplainer:
    def __init__(self,
                 explanation_model: str = "google/flan-t5-large",
                 device: int = 0):
        try:
            self.nlp = spacy.load("en_core_web_sm")
        except OSError:
            subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True)
            self.nlp = spacy.load("en_core_web_sm")
        self.explainer = pipeline(
            "text2text-generation",
            model=explanation_model,
            tokenizer=explanation_model,
            device=device,
            max_length=500,
            max_new_tokens=800
        )

    def extract_concepts(self, text: str) -> list:
        doc = self.nlp(text)
        concepts = set()
        for chunk in doc.noun_chunks:
            if len(chunk) > 1 and not chunk.root.is_stop:
                concepts.add(chunk.text.strip())
        for ent in doc.ents:
            if ent.label_ in ["PERSON", "ORG", "GPE", "NORP", "EVENT", "WORK_OF_ART"]:
                concepts.add(ent.text.strip())
        return list(concepts)

    def explain_concept(self, concept: str, context: str, min_accuracy: float = 0.50) -> str:
        prompt = (
            f"The following sentence from a PDF is given \n{context}\n\n\nNow explain the concept '{concept}' mentioned above with at least {int(min_accuracy * 100)}% accuracy."
        )
        result = self.explainer(
            prompt,
            do_sample=False
        )
        return result[0]["generated_text"].strip()

    def explain_text(self, text: str, context: str) -> dict:
        concepts = self.extract_concepts(text)
        explanations = {}
        for concept in concepts:
            explanations[concept] = self.explain_concept(concept, context)
        return {"concepts": concepts, "explanations": explanations}

class AdvancedPDFAnalyzer:
    def __init__(self):
        self.logger = logging.getLogger("PDFAnalyzer")
        self.model_selector = OptimalModelSelector()
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.qa_model, self.qa_tokenizer, _ = self.model_selector.get_best_model("qa")
        self.qa_model = self.qa_model.to(self.device)
        self.summarizer = pipeline(
            "summarization",
            model="facebook/bart-large-cnn",
            device=0 if torch.cuda.is_available() else -1,
            framework="pt"
        )
        self.logits_processor = LogitsProcessorList([
            ConfidenceCalibrator(calibration_factor=0.85)
        ])
        self.detailed_explainer = DetailedExplainer(device=0 if torch.cuda.is_available() else -1)

    def extract_text_with_metadata(self, file_path: str) -> List[Dict]:
        documents = []
        with open(file_path, 'rb') as f:
            reader = PyPDF2.PdfReader(f)
            for i, page in enumerate(reader.pages):
                text = page.extract_text()
                if not text or not text.strip():
                    continue
                page_number = i + 1
                metadata = {
                    'source': os.path.basename(file_path),
                    'page': page_number,
                    'char_count': len(text),
                    'word_count': len(text.split()),
                }
                documents.append({
                    'content': self._clean_text(text),
                    'metadata': metadata
                })
        if not documents:
            raise ValueError("No extractable content found in PDF")
        return documents

    def _clean_text(self, text: str) -> str:
        text = re.sub(r'[\x00-\x1F\x7F-\x9F]', ' ', text)
        text = re.sub(r'\s+', ' ', text)
        text = re.sub(r'(\w)-\s+(\w)', r'\1\2', text)
        return text.strip()

    def answer_question(self, question: str, documents: List[Dict]) -> Dict:
        retriever = PDFAugmentedRetriever([doc['content'] for doc in documents])
        relevant_contexts = retriever.retrieve(question, top_k=3)
        answers = []
        for page_idx, context, similarity_score in relevant_contexts:
            inputs = self.qa_tokenizer(
                question,
                context,
                add_special_tokens=True,
                return_tensors="pt",
                max_length=512,
                truncation=True
            )
            inputs = {k: v.to(self.device) for k, v in inputs.items()}
            with torch.no_grad():
                outputs = self.qa_model(**inputs)
                start_logits = outputs.start_logits
                end_logits = outputs.end_logits
                logits_processor = LogitsProcessorList([ConfidenceCalibrator()])
                start_logits = logits_processor(inputs['input_ids'], start_logits)
                end_logits = logits_processor(inputs['input_ids'], end_logits)
                start_prob = torch.nn.functional.softmax(start_logits, dim=-1)
                end_prob = torch.nn.functional.softmax(end_logits, dim=-1)
                max_start_score, max_start_idx = torch.max(start_prob, dim=-1)
                max_start_idx_int = max_start_idx.item()
                max_end_score, max_end_idx = torch.max(end_prob[0, max_start_idx_int:], dim=-1)
                max_end_idx_int = max_end_idx.item() + max_start_idx_int
                confidence = float((max_start_score * max_end_score) * 0.9 * similarity_score)
                answer_tokens = inputs["input_ids"][0][max_start_idx_int:max_end_idx_int + 1]
                answer = self.qa_tokenizer.decode(answer_tokens, skip_special_tokens=True)
                explanations_result = self.detailed_explainer.explain_text(answer, context)
                answers.append({
                    "answer": answer,
                    "confidence": confidence,
                    "context": context,
                    "page_number": documents[page_idx]['metadata']['page'],
                    "explanations": explanations_result
                })
        if not answers:
            return {"answer": "No confident answer found", "confidence": 0.0, "explanations": {}}
        best_answer = max(answers, key=lambda x: x['confidence'])
        if best_answer['confidence'] < 0.85:
            best_answer['answer'] = f"[Low Confidence] {best_answer['answer']}"
        return best_answer

analyzer = AdvancedPDFAnalyzer()
documents = analyzer.extract_text_with_metadata("example.pdf")

def ask_question_gradio(question: str):
    if not question.strip():
        return "Please enter a valid question."
    try:
        result = analyzer.answer_question(question, documents)
        answer = result['answer']
        confidence = result['confidence']
        explanation = "\n\n".join(
            f"πŸ”Ή {concept}: {desc}"
            for concept, desc in result.get("explanations", {}).get("explanations", {}).items()
        )
        return f"πŸ“Œ **Answer**: {answer}\n\nπŸ”’ **Confidence**: {confidence:.2f}\n\nπŸ“˜ **Explanations**:\n{explanation}"
    except Exception as e:
        return f"❌ Error: {str(e)}"

demo = gr.Interface(
    fn=ask_question_gradio,
    inputs=gr.Textbox(label="Ask a question about the PDF"),
    outputs=gr.Markdown(label="Answer"),
    title="Quandans AI - Ask Questions",
    description="Ask a question based on the document loaded in this system."
)

demo.launch()