amine_dubs
erroe
2a3ff67
raw
history blame
13.1 kB
from fastapi import FastAPI, File, UploadFile, Form, HTTPException, Request
from fastapi.responses import HTMLResponse, JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from typing import List, Optional
import os
import requests
import json
import traceback
import io
# Import transformers for local model inference
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import torch
# --- Configuration ---
# Determine the base directory of the main.py script
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
# Adjust paths to go one level up from backend to find templates/static
TEMPLATE_DIR = os.path.join(os.path.dirname(BASE_DIR), "templates")
STATIC_DIR = os.path.join(os.path.dirname(BASE_DIR), "static")
# --- Initialize FastAPI ---
app = FastAPI()
app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static")
templates = Jinja2Templates(directory=TEMPLATE_DIR)
# --- Language mapping ---
LANGUAGE_MAP = {
"en": "English",
"fr": "French",
"es": "Spanish",
"de": "German",
"zh": "Chinese",
"ru": "Russian",
"ja": "Japanese",
"hi": "Hindi",
"pt": "Portuguese",
"tr": "Turkish",
"ko": "Korean",
"it": "Italian"
}
# --- Set cache directory to a writeable location ---
# This is crucial for Hugging Face Spaces where /app/.cache is not writable
# Using /tmp which is typically writable in most environments
os.environ['TRANSFORMERS_CACHE'] = '/tmp/transformers_cache'
os.environ['HF_HOME'] = '/tmp/hf_home'
os.environ['XDG_CACHE_HOME'] = '/tmp/cache'
# --- Global model and tokenizer variables ---
translator = None
tokenizer = None
model = None
# --- Model initialization function ---
def initialize_model():
"""Initialize the translation model and tokenizer."""
global translator, tokenizer, model
try:
print("Initializing model and tokenizer...")
# Use a smaller model that works well for instruction-based translation
model_name = "google/flan-t5-small"
# Load the tokenizer with explicit cache directory
tokenizer = AutoTokenizer.from_pretrained(
model_name,
cache_dir="/tmp/transformers_cache"
)
# Check if TensorFlow and tf-keras are available
tf_available = False
try:
import tensorflow
# Try to import tf_keras which is the compatibility package
try:
import tf_keras
print("tf-keras is installed, using TensorFlow with compatibility layer")
tf_available = True
except ImportError:
print("tf-keras not found, will try to use PyTorch backend")
print("TensorFlow is available, will use from_tf=True")
except ImportError:
print("TensorFlow is not installed, will use default PyTorch loading")
# Load the model with appropriate settings based on TensorFlow availability
print(f"Loading model {'with from_tf=True' if tf_available else 'with default PyTorch settings'}...")
try:
# First try with PyTorch approach which is more reliable
model = AutoModelForSeq2SeqLM.from_pretrained(
model_name,
from_tf=False, # Use PyTorch first
cache_dir="/tmp/transformers_cache"
)
except Exception as e:
print(f"PyTorch loading failed: {e}")
if tf_available:
print("Attempting to load with TensorFlow...")
model = AutoModelForSeq2SeqLM.from_pretrained(
model_name,
from_tf=True,
cache_dir="/tmp/transformers_cache"
)
else:
raise # Re-raise if we can't use TensorFlow either
# Create a pipeline with the loaded model and tokenizer
print("Creating pipeline with pre-loaded model...")
translator = pipeline(
"text2text-generation",
model=model,
tokenizer=tokenizer,
device=-1, # Use CPU for compatibility (-1) or GPU if available (0)
max_length=512
)
print(f"Model {model_name} successfully initialized")
return True
except Exception as e:
print(f"Error initializing model: {e}")
traceback.print_exc()
return False
# --- Translation Function ---
def translate_text_internal(text: str, source_lang: str, target_lang: str = "ar") -> str:
"""
Translate text using local T5 model with prompt engineering
"""
global translator
if not text.strip():
return ""
print(f"Translation Request - Source Lang: {source_lang}, Target Lang: {target_lang}")
# Get full language name for prompt
source_lang_name = LANGUAGE_MAP.get(source_lang, source_lang)
# Initialize the model if it hasn't been loaded yet
if translator is None:
success = initialize_model()
if not success:
return fallback_translate(text, source_lang, target_lang)
try:
# Construct our eloquent Arabic translation prompt
prompt = f"""Translate the following {source_lang_name} text into Modern Standard Arabic (Fusha).
Focus on conveying the meaning elegantly using proper Balagha (Arabic eloquence).
Adapt any cultural references or idioms appropriately rather than translating literally.
Ensure the translation reads naturally to a native Arabic speaker.
Text to translate:
{text}"""
# Generate translation using the model
outputs = translator(prompt, max_length=512, do_sample=False)
if outputs and len(outputs) > 0:
translated_text = outputs[0]['generated_text']
print(f"Translation successful using transformers model")
return culturally_adapt_arabic(translated_text)
else:
print("Model returned empty output")
return fallback_translate(text, source_lang, target_lang)
except Exception as e:
print(f"Error in model translation: {e}")
traceback.print_exc()
return fallback_translate(text, source_lang, target_lang)
def fallback_translate(text: str, source_lang: str, target_lang: str = "ar") -> str:
"""Fallback to online translation APIs if local model fails."""
# Try LibreTranslate
libre_translate_endpoints = [
"https://translate.terraprint.co/translate",
"https://libretranslate.de/translate",
"https://translate.argosopentech.com/translate"
]
for endpoint in libre_translate_endpoints:
try:
print(f"Attempting fallback translation using LibreTranslate: {endpoint}")
payload = {
"q": text,
"source": source_lang if source_lang != "auto" else "auto",
"target": target_lang,
"format": "text"
}
response = requests.post(endpoint, json=payload, timeout=10)
if response.status_code == 200:
result = response.json()
translated_text = result.get("translatedText")
if translated_text:
print(f"Translation successful using LibreTranslate {endpoint}")
return culturally_adapt_arabic(translated_text)
except Exception as e:
print(f"Error with LibreTranslate {endpoint}: {e}")
# If all else fails, use a simple English-Arabic dictionary for common phrases
common_phrases = {
"hello": "مرحبا",
"thank you": "شكرا لك",
"goodbye": "مع السلامة",
"welcome": "أهلا وسهلا",
"yes": "نعم",
"no": "لا",
"please": "من فضلك",
"sorry": "آسف",
}
if text.lower().strip() in common_phrases:
return common_phrases[text.lower().strip()]
# Last resort message
return "عذراً، لم نتمكن من ترجمة النص بسبب خطأ فني. الرجاء المحاولة لاحقاً."
def culturally_adapt_arabic(text: str) -> str:
"""Apply post-processing rules to enhance Arabic translation with cultural sensitivity."""
# Replace any Latin punctuation with Arabic ones
text = text.replace('?', '؟').replace(';', '؛').replace(',', '،')
return text
# --- Helper Functions ---
async def extract_text_from_file(file: UploadFile) -> str:
"""Extracts text content from uploaded files without writing to disk."""
content = await file.read()
file_extension = os.path.splitext(file.filename)[1].lower()
extracted_text = ""
try:
if file_extension == '.txt':
# Process text file directly from bytes
try:
extracted_text = content.decode('utf-8')
except UnicodeDecodeError:
# Try other common encodings if UTF-8 fails
for encoding in ['latin-1', 'cp1252', 'utf-16']:
try:
extracted_text = content.decode(encoding)
break
except UnicodeDecodeError:
continue
elif file_extension == '.docx':
try:
import docx
from io import BytesIO
# Load DOCX from memory
doc_stream = BytesIO(content)
doc = docx.Document(doc_stream)
extracted_text = '\n'.join([para.text for para in doc.paragraphs])
except ImportError:
raise HTTPException(status_code=501, detail="DOCX processing requires 'python-docx' library")
elif file_extension == '.pdf':
try:
import fitz # PyMuPDF
from io import BytesIO
# Load PDF from memory
pdf_stream = BytesIO(content)
doc = fitz.open(stream=pdf_stream, filetype="pdf")
page_texts = []
for page in doc:
page_texts.append(page.get_text())
extracted_text = "\n".join(page_texts)
doc.close()
except ImportError:
raise HTTPException(status_code=501, detail="PDF processing requires 'PyMuPDF' library")
else:
raise HTTPException(status_code=400, detail=f"Unsupported file type: {file_extension}")
print(f"Extracted text length: {len(extracted_text)}")
return extracted_text
except Exception as e:
print(f"Error processing file {file.filename}: {e}")
traceback.print_exc()
raise HTTPException(status_code=500, detail=f"Error processing document: {str(e)}")
# --- API Endpoints ---
@app.get("/", response_class=HTMLResponse)
async def read_root(request: Request):
"""Serves the main HTML page."""
return templates.TemplateResponse("index.html", {"request": request})
@app.post("/translate/text")
async def translate_text_endpoint(
text: str = Form(...),
source_lang: str = Form(...),
target_lang: str = Form("ar")
):
"""Translates direct text input."""
if not text:
raise HTTPException(status_code=400, detail="No text provided for translation.")
try:
translated_text = translate_text_internal(text, source_lang, target_lang)
return JSONResponse(content={"translated_text": translated_text, "source_lang": source_lang})
except Exception as e:
print(f"Translation error: {e}")
traceback.print_exc()
raise HTTPException(status_code=500, detail=f"Translation error: {str(e)}")
@app.post("/translate/document")
async def translate_document_endpoint(
file: UploadFile = File(...),
source_lang: str = Form(...),
target_lang: str = Form("ar")
):
"""Translates text extracted from an uploaded document."""
try:
# Extract text directly from the uploaded file
extracted_text = await extract_text_from_file(file)
if not extracted_text:
raise HTTPException(status_code=400, detail="Could not extract any text from the document.")
# Translate the extracted text
translated_text = translate_text_internal(extracted_text, source_lang, target_lang)
return JSONResponse(content={
"original_filename": file.filename,
"detected_source_lang": source_lang,
"translated_text": translated_text
})
except HTTPException as http_exc:
raise http_exc
except Exception as e:
print(f"Document translation error: {e}")
traceback.print_exc()
raise HTTPException(status_code=500, detail=f"Document translation error: {str(e)}")
# --- Run the server (for local development) ---
if __name__ == "__main__":
import uvicorn
uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)