amine_dubs commited on
Commit
068c749
·
1 Parent(s): c38e2fa

Implement transformers library with T5 model and custom Arabic prompt

Browse files
Files changed (1) hide show
  1. backend/main.py +4 -2
backend/main.py CHANGED
@@ -63,20 +63,22 @@ def initialize_model():
63
  # Use a smaller model that works well for instruction-based translation
64
  model_name = "google/flan-t5-small"
65
 
66
- # Load the model and tokenizer with explicit cache directory
67
  tokenizer = AutoTokenizer.from_pretrained(
68
  model_name,
69
  cache_dir="/tmp/transformers_cache"
70
  )
71
 
72
  # Create a pipeline for text2text generation
 
73
  translator = pipeline(
74
  "text2text-generation",
75
  model=model_name,
76
  tokenizer=tokenizer,
77
  device=-1, # Use CPU for compatibility (-1) or GPU if available (0)
78
  cache_dir="/tmp/transformers_cache",
79
- max_length=512
 
80
  )
81
 
82
  print(f"Model {model_name} successfully initialized")
 
63
  # Use a smaller model that works well for instruction-based translation
64
  model_name = "google/flan-t5-small"
65
 
66
+ # Load the tokenizer with explicit cache directory
67
  tokenizer = AutoTokenizer.from_pretrained(
68
  model_name,
69
  cache_dir="/tmp/transformers_cache"
70
  )
71
 
72
  # Create a pipeline for text2text generation
73
+ # Important: Add from_tf=True to load TensorFlow weights
74
  translator = pipeline(
75
  "text2text-generation",
76
  model=model_name,
77
  tokenizer=tokenizer,
78
  device=-1, # Use CPU for compatibility (-1) or GPU if available (0)
79
  cache_dir="/tmp/transformers_cache",
80
+ max_length=512,
81
+ model_kwargs={"from_tf": True} # This is the key fix
82
  )
83
 
84
  print(f"Model {model_name} successfully initialized")